Core Insights - The article discusses the emergence of Vision Language Action (VLA) models, marking a shift in robotics from traditional strategy-based control to a more generalized robotic technology paradigm, enabling active decision-making in complex environments [2][5][20] - It emphasizes the integration of large language models (LLMs) and vision-language models (VLMs) to enhance robotic operations, providing greater flexibility and precision in task execution [6][12] - The survey outlines a clear classification system for VLA methods, categorizing them into autoregressive, diffusion, reinforcement learning, hybrid, and specialized methods, while also addressing the unique contributions and challenges within each category [7][10][22] Group 1: VLA Model Overview - VLA models represent a significant advancement in robotics, allowing for the unification of perception, language understanding, and executable control within a single modeling framework [15][20] - The article categorizes VLA methods into five paradigms: autoregressive, diffusion, reinforcement learning, hybrid, and specialized, detailing their design motivations and core strategies [10][22][23] - The integration of LLMs into VLA systems transforms them from passive input parsers to semantic intermediaries, enhancing their ability to handle long and complex tasks [29][30] Group 2: Applications and Challenges - VLA models have practical applications across various robotic forms, including robotic arms, quadrupeds, humanoid robots, and autonomous vehicles, showcasing their deployment in diverse scenarios [8][20] - The article identifies key challenges in the VLA field, such as data limitations, reasoning speed, and safety concerns, which need to be addressed to accelerate the development of VLA models and general robotic technology [8][19][20] - The reliance on high-quality datasets and simulation platforms is crucial for the effective training and evaluation of VLA models, addressing issues of data scarcity and real-world testing risks [16][19] Group 3: Future Directions - The survey outlines future research directions for VLA, including addressing data limitations, enhancing reasoning speed, and improving safety measures to facilitate the advancement of general embodied intelligence [8][20][21] - It highlights the importance of developing scalable and efficient VLA models that can adapt to various tasks and environments, emphasizing the need for ongoing innovation in this rapidly evolving field [20][39] - The article concludes by underscoring the potential of VLA models to bridge the gap between perception, understanding, and action, positioning them as a key frontier in embodied artificial intelligence [20][21][39]
从300多篇工作中,看VLA在不同场景下的应用和实现......
具身智能之心·2025-09-25 04:00