Core Viewpoint - The article discusses the evolution of intelligent driving algorithms and the importance of data flow architecture in the context of autonomous driving technology, emphasizing the need for advanced computational architectures to handle increasing demands for processing power and reasoning capabilities. Group 1: Evolution of Intelligent Driving Algorithms - The evolution of autonomous driving algorithms can be divided into three phases: the initial phase relied on rule-based algorithms, the second phase shifted towards end-to-end (E2E) learning, and the current phase is focusing on integrating visual language models (VLM) with reinforcement learning (RL) to enhance decision-making capabilities [4][5][6]. Group 2: Importance of Language Models - Language models are deemed essential for achieving long reasoning capabilities in autonomous driving, as they enable the system to generalize and handle corner cases that cannot be addressed solely through data collection or world models [7][8]. - The psychological aspect of having a driving model that aligns with human values and reasoning is highlighted, suggesting that language models can help instill a human-like worldview in autonomous systems [8][9]. Group 3: Computational Architecture - The article critiques the traditional von Neumann architecture, which prioritizes computation over data, and proposes a shift towards data-driven computation to better handle the complexities of AI processing [12][13]. - The company has developed a unique NPU architecture that focuses on data flow rather than traditional SOC designs, aiming to improve efficiency and performance in AI inference tasks [17][18]. Group 4: Performance Metrics - The performance of the company's NPU architecture is reported to be significantly higher than existing solutions, achieving up to 4.4 times the performance in CNN tasks and 2 to 3 times in LlaMA2 7B tasks, while maintaining similar transistor counts [2][18].
理想CTO谢炎在云栖大会分享理想自动驾驶芯片设计思路