Workflow
中科院自动化!EmbodiedCoder:生成模型的参数化具身移动操作
具身智能之心·2025-10-09 00:04

点击下方 卡片 ,关注" 具身智能 之心 "公众号 作者丨 Zefu Lin等 编辑丨具身智能之心 本文只做学术分享,如有侵权,联系删文 >> 点击进入→ 具身智能之心 技术交流群 更多干货,欢迎加入国内首个具身智能全栈学习社区 : 具身智能之心知识星球 (戳我) , 这里包含所有你想要的。 一、研究背景 在机器人领域,让机器人在复杂、非结构化环境中像人类一样熟练完成多样化任务,是长期核心目标。近年来,视觉-语言-动作(VLA)模型通过端到端映射感官 输入与自然语言指令到机器人动作,推动了这一目标的落地,但仍存在显著局限: 为解决这些问题,研究人员提出分层策略,利用视觉-语言模型(VLM)将任务分解为子任务,并调用预定义操纵原语(如导航、抓取)。但这类方法受限于原语 库,无法处理开门、拉抽屉等需要精细交互的真实场景任务——这类任务难以被有限的预定义原语覆盖。 此前基于代码生成的尝试也存在不足:早期方法仅适用于简单几何任务;部分方法依赖学习模型处理物理约束,降低对新场景的适应性;还有方法无法处理接触密 集型操纵,或仅聚焦于故障检测而非扩展操纵能力。针对移动机器人,还需解决环境信息留存、非视野内物体规划等更复杂的 ...