破解MoE模型“规模越大,效率越低”困境!中科院自动化所提出新框架
量子位·2025-10-11 01:15
下面详细来看—— 一套统一框架直击MoE底层运作模式 随着LLM参数规模的持续扩张,模型规模增长与计算效率优化难以协同推进的核心挑战逐渐显现,混合专家模型(MoE)作为一种稀疏激活架 构,为模型规模的持续扩展提供了理论上极具吸引力的技术途径。 中科院自动化所团队 投稿 量子位 | 公众号 QbitAI 大模型参数量飙升至千亿、万亿级,却陷入"规模越大,效率越低" 困境? 中科院自动化所新研究给出破局方案—— 首次让MoE专家告别"静态孤立",开启动态"组队学习" 。 具体而言,MoE本是大语言模型(LLM)实现参数量扩张且计算成本仅呈线性增长的核心路径,却长期受困于负载失衡、参数冗余、通信开销 的"三难困境",成为大模型落地部署的主要瓶颈。 而中科院自动化所的研究团队通过专家集群动态重组,不仅让大模型总参数量 直降80% ,负载方差 降低至原来的三分之一 ,消耗内存更 直 逼轻量级传统稠密模型 ,更一举达成通信延迟、负载均衡、内存占用的三重优化,为大参数LLM的低成本部署提供了新路径。 例如,负载均衡损失函数是一种被动的补偿机制;参数压缩技术(如MoE-Lite)虽减少了参数,却将专家视为独立的实体,忽视了其 ...