Workflow
硅光子技术与激光器集成进展(下)
势银芯链·2025-10-16 08:11

Core Insights - The article discusses the advancements and commercialization efforts of micro-transfer printing (μTP) technology, which is crucial for the integration of III-V materials on silicon substrates, enhancing photonic integrated circuits [2][5][6]. Group 1: μTP Technology Overview - μTP technology was developed by researchers at the University of Illinois in 2004 and has seen significant advancements, including the ability to transfer individual devices onto target photonic chips [2]. - The process involves using a PDMS stamp to pick and transfer devices, ensuring high alignment accuracy and allowing for large-scale parallel integration [3]. - μTP enables the integration of different materials on a common substrate without modifying the backend processes of silicon photonics [3]. Group 2: Commercialization Efforts - The INSPIRE project, running from 2021 to March 2025, focuses on commercializing wafer-level μTP technology, aiming to combine InP and SiN photonics on a single platform [5]. - Key partners in the INSPIRE project include Eindhoven University of Technology, imec, Smart Photonics, and Cambridge University, among others [5]. Group 3: Integration Challenges - The integration of III-V materials on silicon faces challenges due to lattice mismatch, which can lead to defects affecting the reliability of semiconductor lasers [6]. - Successful applications of single-chip methods in quantum dot devices have been reported, indicating potential for improved laser reliability [6]. Group 4: Upcoming Conference - TrendBank plans to host a conference from November 17-19, 2025, focusing on heterogeneous integration technologies, aiming to foster collaboration between industry and academia [9]. - The conference will cover advanced packaging technologies, including multi-material integration and photonic-electronic co-packaging [9].