Workflow
小米最新大模型成果!罗福莉现身了

Core Insights - Xiaomi's AI team, in collaboration with Peking University, has recently published a paper focusing on MoE (Mixture of Experts) and reinforcement learning, revealing new advancements in large model training [2][8]. Group 1: Research Findings - The paper proposes a novel approach to enhance the stability and efficiency of large model reinforcement learning within the MoE framework [8][10]. - Current reinforcement learning methods face challenges in balancing efficiency and stability, often leading to catastrophic failures during training [14][24]. - The research introduces a method called Rollout Routing Replay (R3), which locks the routing distribution during inference and reuses it during training, ensuring consistency between the two phases [30][31]. Group 2: Experimental Results - Experiments conducted on the Qwen3-30B-A3B model demonstrate that R3 consistently outperforms other methods across various metrics, achieving higher scores in multiple scenarios [41][42]. - The introduction of R3 significantly reduces the occurrence of training crashes, maintaining a stable performance curve even after extended training periods [44][48]. - R3 not only stabilizes the model but also accelerates the optimization process, allowing for quicker identification of effective strategies [50]. Group 3: Team and Contributors - The research team includes notable contributors such as Wenhan Ma, a researcher from Xiaomi's LLM-Core team, and Luo Fuli, who has a strong academic background and has previously worked on significant AI projects [52][59]. - The paper also acknowledges the contributions of Professor Sui Zhifang from Peking University, who has extensive experience in computational linguistics and AI research [62][66].