Core Insights - The article discusses the innovative research by Thinking Machine, focusing on a new training method for small language models called On-Policy Distillation, which enhances their understanding of specialized fields [1][4]. Summary by Sections Methodology - On-Policy Distillation combines the strengths of two traditional training methods: reinforcement learning (self-exploration) and supervised fine-tuning (direct answers), creating a more efficient training framework [3][8]. - This method allows AI to learn through practical problem-solving while receiving immediate guidance when it encounters difficulties, significantly improving training efficiency by 50-100 times [4][5]. Training Phases - The training process consists of three main phases: Pre-training (general capabilities), Mid-training (domain-specific knowledge), and Post-training (target behavior guidance) [9]. - The focus of the research is on the Post-training phase, where the model learns to perform specific tasks effectively [6][9]. Evaluation Metrics - The method employs Negative reverse KL divergence as a key evaluation metric, ensuring that the student model learns effectively by minimizing the divergence from the teacher model's expectations [12][15]. Experimental Results - Experiment 1 demonstrated that using On-Policy Distillation, a smaller model (8B) could achieve a performance score of 70% on a math benchmark with significantly lower computational costs compared to traditional methods [19][22]. - Experiment 2 showed that the method effectively mitigates "catastrophic forgetting" in AI models, allowing them to retain general capabilities while learning new knowledge [23][25]. Implications - The research indicates that On-Policy Distillation can empower resource-constrained individuals or small companies to train effective specialized models, enhancing accessibility in AI development [5][19]. - The findings suggest a promising avenue for achieving lifelong learning in AI systems, addressing the challenge of balancing new knowledge acquisition with the retention of existing skills [26].
Thinking Machine新研究刷屏!结合RL+微调优势,小模型训练更具性价比了
 量子位·2025-10-28 01:18
