Core Viewpoint - The article emphasizes that nuclear fusion is entering a critical phase of "engineering verification" and "demonstration reactor introduction," suggesting a focus on the key window for industrialization configuration [1]. Group 1: Global Nuclear Fusion Landscape - Nuclear fusion is recognized for its environmental friendliness, abundant resources, high energy density, and self-limiting reaction mechanisms, making it a key focus in future energy strategies globally [3][4]. - Major economies, including China, the US, Japan, and the UK, are accelerating the development of nuclear fusion through legislative support and funding, establishing a comprehensive support system from top-level design to industrial practice [3][9]. - By mid-2025, the cumulative financing for the global commercial nuclear fusion industry is expected to reach $9.766 billion, marking the highest annual increase in three years [3][12]. Group 2: Technological Advancements and Cost Structure - The core value of nuclear fusion devices, such as the ITER project, is concentrated in four major systems: magnets, blanket, vacuum chamber, and divertor, with the highest cost shares being 28%, 17%, 14%, and 8% respectively [3][39]. - The transition to high-temperature superconductors is crucial for enhancing fusion power density and reducing the overall size of fusion reactors, significantly impacting the commercialization process [19][22]. - The cost of nuclear fusion plants is a decisive factor for their penetration in future power systems, with potential construction costs ranging from $11,300/kW to $2,800/kW influencing their market share [22]. Group 3: International Collaboration and Domestic Development - The ITER project represents a significant international collaboration, with China contributing to key components and systems, highlighting the global effort in nuclear fusion research [25][29]. - The US National Ignition Facility (NIF) serves as a representative platform for inertial confinement fusion research, showcasing advancements in energy release and control [27][31]. - China's nuclear fusion technology roadmap aims to establish a fusion engineering test reactor by 2025 and a commercial demonstration plant by 2050, indicating a structured approach to domestic development [37][41].
中金 | 核聚变之光02:能源革命的下个纪元
中金点睛·2025-11-07 00:07