Core Viewpoint - The article discusses the introduction of the πRL framework, which enhances flow-based vision-language-action (VLA) models through online reinforcement learning (RL) fine-tuning, significantly improving their performance and generalization capabilities [5][7]. Group 1: Introduction to VLA Models - VLA models enable robots to understand and execute complex tasks through multimodal inputs, but large-scale RL applications face challenges due to the difficulty in handling action log-likelihood during the iterative denoising process [5]. Group 2: πRL Framework - The πRL framework, developed by teams from Tsinghua University and Peking University, addresses the challenges of applying large-scale RL to flow-based VLA models by training them in parallel simulations [6]. Group 3: RL Algorithms in πRL - πRL implements two RL algorithms: 1. FlowNoise models the denoising process as a discrete-time Markov Decision Process (MDP) using a learnable noise network for precise log-likelihood calculations [7]. 2. Flow-SDE combines the denoising process with agent-environment interaction, constructing a dual-layer MDP that transitions from ODE to SDE for efficient RL exploration [7]. Group 4: Performance Evaluation - In benchmark tests, πRL significantly improved the performance of few-shot SFT models π0 and π0.5 from 57.6% to 97.6% and from 77.1% to 98.3% on the LIBERO dataset, respectively [7]. - In the ManiSkill benchmark, πRL demonstrated scalable multi-task RL capabilities across 4,352 grasping and placing tasks using 320 parallel environments [7]. Group 5: Conclusion - Overall, πRL shows substantial performance enhancements and stronger generalization compared to SFT models, validating the effectiveness of online RL in flow-based VLA models [7].
聊聊在线强化学习是怎么微调π0和π0.5的?为什么性能最高能提升50%以上?
具身智能之心·2025-11-10 03:30