Core Insights - DeepSeek has released two official models, DeepSeek-V3.2 and DeepSeek-V3.2-Speciale, with the former achieving performance levels comparable to GPT-5 and the latter winning gold medals in four international competitions [1][3]. Model Performance - DeepSeek-V3.2 has reached the highest level of tool invocation capabilities among current open-source models, significantly narrowing the gap with closed-source models [2]. - In various benchmark tests, DeepSeek-V3.2 achieved a 93.1% pass rate in AIME 2025, closely trailing GPT-5's 94.6% and Gemini-3.0-Pro's 95.0% [20]. Training Strategy - The model's significant improvement is attributed to a fundamental change in training strategy, moving from a simple "direct tool invocation" to a more sophisticated "thinking + tool invocation" mechanism [9][11]. - DeepSeek has constructed a new large-scale data synthesis pipeline, generating over 1,800 environments and 85,000 complex instructions specifically for reinforcement learning [12]. Architectural Innovations - The introduction of the DeepSeek Sparse Attention (DSA) mechanism has effectively addressed efficiency bottlenecks in traditional attention mechanisms, reducing complexity from O(L²) to O(Lk) while maintaining model performance [6][7]. - The model's architecture allows for better context management, retaining relevant reasoning content during tool-related messages, thus avoiding inefficient repeated reasoning [14]. Competitive Landscape - The release of DeepSeek-V3.2 signals a shift in the competitive landscape, indicating that the absolute technical monopoly of closed-source models is being challenged by open-source models gaining first-tier competitiveness [20][22]. - This development has three implications: lower costs and greater customization for developers, reduced reliance on overseas APIs for enterprises, and a shift in the industry focus from "who has the largest parameters" to "who has the strongest methods" [22].
开源最强!“拳打GPT 5”,“脚踢Gemini-3.0”,DeepSeek V3.2为何提升这么多?
华尔街见闻·2025-12-02 04:21