反潮流的TSV
半导体行业观察·2025-12-10 01:50

Core Viewpoint - The advancement in semiconductor technology is shifting from device scaling to interconnects, with advanced packaging becoming the new frontier, particularly through the use of larger Through-Silicon Vias (TSVs) to enhance electrical performance, power delivery, thermal management, and manufacturing yield [2][11]. Group 1: Evolution of Interconnect Technology - The journey began with wire bonding, the standard interconnect technology of the 20th century, followed by flip-chip packaging, which reduced interconnect size and parasitic effects [4]. - The introduction of silicon interposers in the early 21st century provided a platform for high-density interconnects, enabling the development of breakthrough technologies like Xilinx FPGA Virtex 7 and AI accelerators [4][6]. - TSVs are vertical channels that allow direct communication between chips, significantly reducing signal delay and enhancing overall system performance compared to traditional wire bonding [4][6]. Group 2: Characteristics and Functions of Interposers - Interposers serve as a critical layer between silicon chips and printed circuit boards (PCBs), enhancing functionality and performance through high-density interconnects [6]. - They are custom-designed based on specific chip packaging requirements and play three key roles: providing a mounting surface for semiconductor chips, enabling connections between chips, and connecting the stacked structure to the packaging substrate [6][7]. - Interposers are typically made from silicon, glass, or organic substrates, with TSMC being a major supplier [7]. Group 3: Advantages of Larger TSVs - Larger TSVs (up to 50μm in diameter and 300μm in depth) are being developed to support higher power transmission, lower high-frequency losses, and improved thermal management [11][15]. - The transition from traditional TSVs (5-10μm in diameter) to larger TSVs represents a fundamental shift in packaging concepts, enabling better performance for high-performance computing (HPC), AI, and 5G applications [16]. - Larger TSVs can accommodate greater currents, reduce IR drop, and enhance signal integrity, which is crucial for high-frequency applications [15][16]. Group 4: Challenges and Future Directions - Despite the advantages, larger TSVs present challenges such as increased mechanical stress due to mismatched thermal expansion coefficients and reduced available routing space on the interposer [13]. - The industry is exploring new materials and designs to mitigate these challenges while ensuring cost-effectiveness and reliability in future applications [16]. - Future interposers are expected to integrate more functionalities and materials, supporting heterogeneous integration of CPUs, GPUs, memory, and RF devices, while also addressing thermal management and cost scaling [16].

反潮流的TSV - Reportify