Core Viewpoint - The article discusses the shift from autoregressive models to diffusion architecture in language models, highlighting the potential for faster generation speeds and lower computational costs with diffusion models [2][8]. Group 1: Diffusion Architecture Insights - Diffusion architecture allows for direct modification and control of tokens during inference, unlike autoregressive models that require re-generating entire segments [2][15]. - The recent release of LLaDA 2.0 marks a significant milestone, achieving a scale of 100 billion parameters for diffusion language models [4][44]. - The development of diffusion models is still in its early stages, but it has attracted attention from major companies like Google and ByteDance, as well as several startups [5][41]. Group 2: Technical Aspects and Comparisons - Diffusion models operate on a "fill-in-the-blank" mechanism rather than a sequential token generation, which can lead to more efficient data utilization [12][21]. - In terms of parameter efficiency, diffusion models can achieve similar performance with fewer parameters compared to autoregressive models under the same computational constraints [15][23]. - The unique characteristics of diffusion models allow for continuous training, unlike autoregressive models that plateau after several epochs [24][26]. Group 3: Future Directions and Community Engagement - The article emphasizes the need for further exploration of the scaling laws specific to diffusion language models, which differ from those of autoregressive models [56]. - The community is encouraged to participate in the development and optimization of diffusion models, as the ecosystem is still in its infancy [56]. - Upcoming collaborations and API releases are planned to enhance accessibility and integration of diffusion models into various applications [51].
跳过“逐字生成”!蚂蚁集团赵俊博:扩散模型让我们能直接修改Token | MEET2026
量子位·2025-12-12 03:00