效率提升25%,灵巧操作数采困境被「臂-手共享自主框架」解决
具身智能之心·2025-12-13 01:02
编辑丨机器之心 点击下方 卡片 ,关注" 具身智能之心 "公众号 更多干货,欢迎加入国内首个具身智能全栈学习社区: 具身智能之心知识星球(戳我) ,这里包含所有你想要的! 实现通用机器人的类人灵巧操作能力,是机器人学领域长期以来的核心挑战之一。近年来,视觉 - 语言 - 动作 (Vision-Language-Action,VLA) 模型在机器人技能学 习方面展现出显著潜力,但其发展受制于一个根本性瓶颈: 高质量操作数据的获取。 ByteDance Seed 团队最新的研究论文《End-to-End Dexterous Arm-Hand VLA Policies via Shared Autonomy》[1],针对这一关键问题提出了解决方案。 该研究的核心贡献在于提出了共享自主 (Shared Autonomy) 框架,通过合理划分人类操作员与自主 AI 系统的控制职责——人通过 VR 遥操作控制机械臂 (负责高层 定位和避障),DexGrasp-VLA 自主控制灵巧手 (负责精细抓握),消除了同时遥操作臂和灵巧手的需求,大幅降低操作员认知负荷,有效解决了机器人部署中最关 键的数据采集成本问题。通过将数据采集 ...