大摩重磅机器人年鉴(二):机器人"逃离工厂",训练重点从“大脑”转向“身体”,边缘算力有望爆发
华尔街见闻·2025-12-16 04:49

摩根士丹利最新指出,人工智能驱动的机器人正在经历从工厂车间向更广阔应用场景的历史性转移,训练重点从传统的认知能力转向物理操控能力,这一变化 有望催生边缘计算需求的爆发式增长。 12月15日,据硬AI消息,大摩在最新发布的《机器人年鉴(第二卷)》报告中指出,全球机器人行业正迎来两大关键转变: 一是机器人应用场景从工厂向家 庭、城市、太空等非结构化环境"逃逸",二是训练重点从传统AI"大脑"(通用模型)转向"身体"(物理动作控制)。 大摩指出, 这一转变将驱动边缘算力需求爆发 ,实时推理芯片、模拟技术、机器人传感器等领域或成核心投资主线。报告强调,物理世界的复杂性(如抓取 物体的力度控制、动态环境导航)正倒逼技术路线从"纯软件优化"转向"软硬协同",而分布式边缘计算可能重塑全球算力基础设施格局。 摩根士丹利预测,到2050年全球将售出14亿台机器人,这将推动边缘AI算力需求达到数百万个B200芯片当量,重塑全球计算基础设施的分布格局。 机器人"逃离工厂":从结构化牢笼到复杂现实世界 传统工业机器人(Pre-AI Robotics)被局限于工厂的"结构化牢笼":任务单一(如重复装配)、环境可控(固定产线)、无需感知 ...