中金 | AI十年展望(二十六):2026关键趋势之模型技术篇
中金点睛·2026-02-04 23:52

Core Insights - The article discusses the advancements in large model technology, highlighting improvements in reasoning, programming, agentic capabilities, and multimodal abilities, while also noting existing shortcomings in general reliability and memory capabilities [1][4]. Model Architecture and Optimization - The Transformer architecture continues to dominate, with a consensus on the efficiency of the Mixture of Experts (MoE) model, which activates only a subset of parameters, significantly reducing computational costs [17][18]. - The industry is exploring various attention mechanisms to balance precision and efficiency, including Full-Attention, Linear-Attention, and Hybrid-Attention [20]. Model Capabilities - Significant progress has been made in reasoning, programming, agentic tasks, and multimodal applications, with models achieving real productivity levels in various domains [3][4]. - The introduction of reinforcement learning is crucial for unlocking advanced model capabilities, allowing for more logical reasoning aligned with human preferences [2][23]. Competitive Landscape - Major players like OpenAI, Gemini, and Anthropic are intensifying their competition, with OpenAI focusing on enhancing reasoning and multimodal integration, while Gemini has made significant strides in model capabilities and is leveraging high-quality data for improvements [11][42][43]. - Domestic models are catching up, maintaining a static gap of about six months behind their international counterparts, with companies like Alibaba and ByteDance producing competitive models [12][14]. Future Directions - The focus for 2026 includes further advancements in reinforcement learning, continuous learning, and world models, with expectations for models to tackle more complex tasks and achieve long-term goals like AGI [27][40]. - Continuous learning and model memory are seen as essential for achieving lifelong learning capabilities, with new algorithms like MIRAS and HOPE being pivotal in this evolution [28][32].