二氧化碳加氢制乙烷

Search documents
常温下实现!科研人员突破又一技术瓶颈
Huan Qiu Wang Zi Xun· 2025-09-05 13:02
科研人员在气相色谱前检测分析二氧化碳转化为乙烷或乙烯实验结果。中国科学院大连化学物理研究所 供图 传统氢气异裂过程需在高温高压下进行,不仅能耗高,也伴随一定的安全风险。在这项研究中,研究团 队创新性地提出利用光生电子与空穴共同构建空间相邻的正负电荷中心,成功突破了这一技术瓶颈。他 们以金/二氧化钛为模型催化剂,在紫外光激发下,产生束缚态电子-空穴对,实现了常温下的氢气高效 异裂。 更令人振奋的是,这种光催化方法在二氧化碳还原反应中展现出显著优势。在常温条件下,氢气异裂产 生的活性氢物种可以将二氧化碳全部转化为乙烷,再通过后续装置转化为乙烯,转化率高达99%。而 且,催化剂可以稳定运行超过1500小时,显示出极佳的工业应用前景。 来源:科技日报 ◎ 科技日报记者 陆成宽 《科学》5日在线发表了光催化氢气"裂解"的重要成果,来自中国科学院大连化学物理研究所等单位的 科研人员,提出了一种新型光催化策略,在常温条件下实现氢气异裂,为绿色低碳化工提供了全新路 径。 论文通讯作者、中国科学院大连化学物理研究所研究员王峰说,这一技术可以拓展至多种光催化剂体 系,甚至可以利用太阳光实现二氧化碳加氢制乙烷,选择性达到90%。 ...
新型光催化策略在常温下实现氢气活化
Ke Ji Ri Bao· 2025-09-05 08:55
Core Insights - A new photocatalytic strategy has been developed that allows for efficient hydrogen "cracking" at room temperature, transforming carbon dioxide into high-value chemicals, marking a significant advancement in green low-carbon chemical processes [1][2]. Group 1: Photocatalytic Hydrogen Cracking - The research team has successfully achieved hydrogen cracking at room temperature using a novel approach that utilizes photo-generated electrons and holes to create spatially adjacent positive and negative charge centers [2]. - The model catalyst used in this study is gold/titanium dioxide, which, when excited by ultraviolet light, generates bound electron-hole pairs, enabling efficient hydrogen cracking [2]. Group 2: Carbon Dioxide Reduction - The active hydrogen species produced from hydrogen cracking can convert carbon dioxide entirely into ethane at room temperature, with a conversion rate reaching 99% [2]. - This photocatalytic method not only reduces energy consumption and carbon emissions compared to traditional hydrogenation processes but also significantly lowers carbon dioxide emissions, contributing to the optimization of carbon resource utilization [3]. Group 3: Industrial Application and Future Research - The catalyst demonstrated stable operation for over 1500 hours, indicating strong potential for industrial applications [2]. - Future research will focus on further exploring reaction processes and developing industrial pathways that couple light and thermal energy, aiming to provide new models for the upgrading and transformation of modern coal chemical industries [4].