Workflow
代码大模型的Scaling Laws
icon
Search documents
北航提出代码大模型的 Scaling Laws:编程语言差异与多语言最优配比策略
机器之心· 2025-12-24 09:30
北航、人大和九坤投资共同撰写的论文 《Scaling Laws for Code: Every Programming Language Matters》 整理而成。 在代码大模型(Code LLMs)的预训练中,行业内长期存在一种惯性思维,即把所有编程语言的代码都视为同质化的文本数据,主要关注数据总量的堆 叠。然而,现代软件开发本质上是多语言混合的,不同语言的语法特性、语料规模和应用场景差异巨大。如果忽略这些差异,笼统地应用通用的 Scaling Laws,往往会导致性能预测偏差和算力浪费。 为了打破这一黑盒,研究团队耗费了相当于 33.6 万个 H800 GPU 时,进行了超过 1000 次实验。研究覆盖了从 0.2B 到 14B 的模型参数规模,以及高 达 1T 的训练数据量,系统性地对 Python、Java、JavaScript、TypeScript、C#、Go、Rust 这七种主流语言进行了解构。这项工作的核心贡献在于建立 了 区分语言特性的 Scaling Laws ,并据此提出了一套数学可解的最优数据配比方案。 图 1:论文提出的多语言 Scaling Law 与传统均匀分布基线的 Loss ...