全景视觉
Search documents
Insta360最新全景综述:全景视觉的挑战、方法与未来
机器之心· 2025-10-04 03:38
Core Insights - The article discusses the transition from perspective vision to panoramic vision, highlighting the "perspective-panorama gap" as a central theme for understanding the challenges and opportunities in this field [6][19]. - It emphasizes the need for a systematic upgrade across data, models, and applications to enhance the usability of panoramic vision technologies [16][19]. Research Background and Motivation - The paper titled "One Flight Over the Gap: A Survey from Perspective to Panoramic Vision" aims to systematically analyze the differences between perspective and panoramic vision, covering over 300 papers and 20 representative tasks [4][19]. - The article provides a comprehensive overview of the challenges faced in panoramic vision, which are categorized into three main gaps: geometric distortion, non-uniform sampling, and boundary continuity [6][9]. Strategies Overview - Four main strategies are identified for adapting tasks to panoramic vision: 1. **Geometric Distortion**: Issues arise when spherical images are projected onto a plane, leading to shape distortion [7]. 2. **Non-uniform Sampling**: Pixel density varies significantly across different regions, affecting resolution [7]. 3. **Boundary Continuity**: The separation of boundaries in 2D images can lead to learning continuity issues [7]. - The article outlines a cross-method comparison to clarify the applicability of different strategies to various tasks [9][15]. Task Toolbox - The article lists over 20 tasks categorized into four main areas: enhancement and assessment, understanding, multi-modal, and generation, along with representative methods and key papers for each task [12][15]. - It highlights the rapid emergence of new paradigms such as diffusion and generative models, particularly in text-to-image/video and novel view synthesis [15]. Future Directions - To transition from "usable" to "user-friendly," advancements must be made in three main areas: data, model paradigms, and downstream applications [16][21]. - Key challenges include: 1. **Data Bottlenecks**: Lack of large-scale, diverse, and high-quality 360° datasets limits general training and reproducible evaluation [21]. 2. **Model Paradigms**: The need for robust models that can adapt from perspective to panoramic vision while maintaining performance across various tasks [21]. 3. **Downstream Applications**: Applications in spatial intelligence, XR, 3D reconstruction, and various industry sectors require effective deployment and compliance [21][22].