Workflow
声子
icon
Search documents
北京大学发表最新Nature论文
生物世界· 2025-06-13 23:55
编辑丨王多鱼 排版丨水成文 理解材料界面间的热传输机制对于推进半导体技术至关重要,尤其是在极高的功率密度下运行的微型化器件方面。尽管界面声子介导过程在理论上已被确立为半 导体中界面热传输的主要机制,但由于在测量埋藏界面的温度和非平衡声子分布方面存在挑战,其纳米级动态特性在实验上仍难以捉摸。 2025 年 6 月 11 日,北京大学 高鹏 团队在国际顶尖学术期刊 Nature 上发表了题为: Probing phonon transport dynamics across an interface by electron microscopy 的研究论文。该研究通过电子显微镜探究了界面间声子传输动力学。 研究团队观察到界面约 2 纳米范围内存在陡峭的温度骤降,从而能够直接提取相对界面热阻 (ITR) 。在热输运过程中,界面处声子模式热导率的不匹配导致邻 近区域产生大量非平衡声子。这致使正向与逆向热流下界面模式的声子占据数呈现差异,同时引起界面约 3 纳米范围内 AlN 光学声子模态温度的显著变化。 这些结果揭示了(亚)纳米尺度的声子传输动力学,并证实了界面模式参与的声子非弹性散射机制,为热界面工程设计提供了重要 ...
华人学者一天发表了12篇Nature论文
生物世界· 2025-06-12 07:55
Core Insights - The article highlights the significant contributions of Chinese scholars in the latest issue of the journal Nature, with 12 out of 24 papers authored by them, indicating a strong presence in cutting-edge research [1][25]. Group 1: Research on Health and Medicine - A study from Zhaoquan Wang at the Sloan Kettering Cancer Center reveals that high fructose intake in early life impairs microglial phagocytosis and neurodevelopment, potentially increasing anxiety risk during adolescence [1]. - Research by Yang Wei from the NIH discusses the dynamic assemblies and coordinated reactions involved in non-homologous end joining, providing insights into DNA repair mechanisms [4]. - A paper from Gaoqun Zhang at the Max Planck Institute explores the developmental trajectory and evolutionary origin of thymic mimetic cells, shedding light on immune system development [10]. - A study by Lingjie Sang from the University of Texas Southwestern Medical Center identifies glycosaminoglycan-driven lipoprotein uptake as a key mechanism for cancer cells to resist ferroptosis, suggesting a new target for cancer therapy [11]. Group 2: Innovations in Technology and Materials - Research by Jianmin Liang at Arizona State University presents a fully open AI foundation model for chest radiography, outperforming existing models in detecting rare chest diseases [2][4]. - A study from Jack Chun-Ting Liu at Stanford University discovers genes enabling the biosynthesis of baccatin III, a precursor for the anticancer drug paclitaxel, addressing the challenge of sourcing sufficient quantities from natural plants [3]. - A paper from Jia Liu at Harvard University introduces a flexible neural implant that grows with the brain, promising advancements in treating neurological disorders [5]. - Research from Zheng Guo at the University of Science and Technology of China demonstrates a new method to enhance the lifespan of perovskite light-emitting diodes, achieving brightness over 1.16 million nits and a lifespan exceeding 180,000 hours [7]. Group 3: Environmental and Earth Sciences - A study by Jianghui Du at ETH Zurich challenges traditional views on marine biogeochemistry, indicating that various trace elements in the ocean originate from the seafloor [6]. - Research by Peng Gao at Peking University investigates phonon transport dynamics across interfaces, providing insights for thermal interface engineering [8]. - A paper from Wei-Yu Qian at Leibniz University presents the preparation of a neutral nitrogen allotrope, which could open new opportunities for energy storage concepts [9].
微型“蹦床”引导声子在芯片中顺畅转弯
Ke Ji Ri Bao· 2025-06-09 23:47
全球最疯狂的"蹦床"不仅能左右摇摆,还能"拐弯"。这款微型"蹦床"由德国康斯坦茨大学、丹麦哥本哈 根大学和瑞士苏黎世联邦理工学院的物理学家共同设计并制造。其目的在于展示一种改进的声子传输方 法,例如将其应用于微芯片中,引导声子通过狭窄的弯道。相关研究论文发表于最新一期《自然》杂 志。 想象一下这样一张"蹦床":它宽0.2毫米,表面厚度仅有两千万分之一毫米,整个表面布满了规则排列 的圆形、三角形孔洞图案。而且这张"蹦床"一旦动起来,几乎不会损失任何动量,会一直摆动下去,根 本停不下来。 这张"蹦床"的摆动方式可不止上下跳动这么简单。在其多孔表面的不同区域,"蹦床"能同时向不同方向 摆动,包括横向摆动。在中心区域,甚至还有一个"蹦床中的蹦床"。最神奇的是,在这里,摆动会以完 美的三角形"拐弯"。 实际上,这张"蹦床"是声子的波导,即一层由氮化硅制成的振动超薄膜。声子,可说是"声音量子",即 固体晶格振动的基本激发单元。 物理学家希望通过这张"蹦床"来展示如何利用独特的表面结构(基于数学拓扑原理),在几乎不损失动 量的情况下,引导声子绕过弯角。这在需要引导信号绕过边缘和曲线的微芯片电路中尤为重要。 实验结果令人印象 ...