大模型轻量化与高效微调技术

Search documents
自驾搞科研别蛮干!用对套路弯道超车~
自动驾驶之心· 2025-07-11 01:14
Core Viewpoint - The article emphasizes the importance of learning from experienced mentors in the field of research, particularly in LLM/MLLM, to accelerate the research process and achieve results more efficiently [1]. Group 1: Course Offerings - The program offers a 1v6 elite small class format, allowing for personalized guidance from a mentor throughout the research process [5]. - The course covers everything from model theory to practical coding, helping participants build their own knowledge systems and understand algorithm design and innovation in LLM/MLLM [1][10]. - Participants will receive tailored ideas from the mentor to kickstart their research, even if they lack a clear direction initially [7]. Group 2: Instructor Background - The instructor has a strong academic background, having graduated from a prestigious computer science university and worked as an algorithm researcher in various companies [2]. - The instructor's research includes computer vision, efficient model compression algorithms, and multimodal large language models, with a focus on lightweight models and efficient fine-tuning techniques [2][3]. Group 3: Target Audience - The program is suitable for graduate students and professionals in the fields of autonomous driving, AI, and those looking to enhance their algorithmic knowledge and research skills [11]. - It caters to individuals who need to publish papers for academic recognition or those who want to systematically master model compression and multimodal reasoning [11]. Group 4: Course Structure and Requirements - The course is designed to accommodate students with varying levels of foundational knowledge, with adjustments made to the depth of instruction based on participants' backgrounds [14]. - Participants are expected to have a basic understanding of deep learning and machine learning, familiarity with Python and PyTorch, and a willingness to engage actively in the learning process [16][19].