Workflow
扩散大语言模型(dLLMs)
icon
Search documents
开源扩散大模型首次跑赢自回归!上交大联手UCSD推出D2F,吞吐量达LLaMA3的2.5倍
机器之心· 2025-08-18 03:22
Core Insights - The article discusses the introduction of Discrete Diffusion Forcing (D2F), a new model that significantly enhances the inference speed of open-source diffusion large language models (dLLMs) compared to autoregressive (AR) models, achieving up to 2.5 times higher throughput on benchmarks like GSM8K [2][6][22]. Group 1: Challenges and Solutions - Existing dLLMs face challenges such as the lack of a complete KV cache mechanism and insufficient parallel potential, resulting in slower inference speeds compared to AR models [2][8]. - D2F addresses these challenges by integrating a mixed paradigm of autoregressive and diffusion approaches, optimizing model architecture, training methods, and inference strategies [11][12]. Group 2: D2F Design Features - D2F incorporates block-level causal attention to ensure compatibility with KV caching, allowing for the reuse of KV states and reducing computational redundancy [12][15]. - The model employs asymmetric distillation and structured noise scheduling to efficiently transfer knowledge from a pre-trained teacher model to the D2F student model, enhancing its parallel capabilities [18]. Group 3: Inference Mechanism - D2F introduces a pipelined parallel decoding algorithm that maintains a dynamic decoding window, allowing for semi-activated and fully-activated states to optimize throughput and quality [20][21]. - The model achieves a maximum speedup of up to 50 times compared to original dLLMs while maintaining average performance levels [22]. Group 4: Performance Metrics - D2F demonstrates superior performance-efficiency trade-offs, with the ability to adapt to various scenarios by adjusting decoding parameters, achieving over four times the throughput of AR models in specific tasks [25]. - Comparative tests show D2F-LLaDA achieving a throughput of 52.5 tokens per second, representing a 7.3 times increase over baseline methods [23]. Group 5: Future Directions - The success of D2F indicates a promising path for further research in parallel decoding technologies, with potential future developments including real-time serving capabilities and hybrid parallel processing [28].