Workflow
结构与时间联合依赖建模
icon
Search documents
建模市场与人机共振:李天成超越价格预测的认知框架
Sou Hu Wang· 2025-06-30 10:40
Group 1 - The market cannot be precisely predicted, and the goal is to build a cognitive framework to understand its current state and infer short-term evolution [1] - Traditional technical analysis attempts to reduce the complexity of market processes but often overlooks the high-dimensional latent space that drives price movements [1] Group 2 - Early deep learning models like CNNs capture local spatial patterns but fail to understand the path dependency of time series data [2] - LSTM and its variants address the limitations of CNNs by capturing sequential dependencies, but they assume a linear flow of information, which does not reflect the complex interactions in real markets [3] Group 3 - A paradigm shift is needed from sequential dependency modeling to spatio-temporal structural dependency modeling to better capture market dynamics [5] - The core of the proposed approach is a dynamic temporal knowledge graph that models relationships among entities, which is essential for understanding market interactions [6] Group 4 - The use of heterogeneous Hawkes processes allows for modeling event flows within the knowledge graph, capturing the ripple effects of market events [6] - By maximizing the log-likelihood function, the system can derive embedding vectors for entities and relationships, projecting the knowledge graph into a lower-dimensional latent space [7] Group 5 - The model's output is a posterior probability that combines likelihood from data and prior probability based on human insights, emphasizing the importance of human judgment in the decision-making process [9][10] - The company aims to create a decision framework that optimizes long-term expected value rather than focusing on short-term gains, leveraging the cognitive spread between its insights and market averages [11]