Workflow
自动驾驶感知
icon
Search documents
自动驾驶基础模型应该以能力为导向,而不仅是局限于方法本身
自动驾驶之心· 2025-09-16 23:33
Core Insights - The article discusses the transformative impact of foundational models on the autonomous driving perception domain, shifting from task-specific deep learning models to versatile architectures trained on vast and diverse datasets [2][4] - It introduces a new classification framework focusing on four core capabilities essential for robust performance in dynamic driving environments: general knowledge, spatial understanding, multi-sensor robustness, and temporal reasoning [2][5] Group 1: Introduction and Background - Autonomous driving perception is crucial for enabling vehicles to interpret their surroundings in real-time, involving key tasks such as object detection, semantic segmentation, and tracking [3] - Traditional models, designed for specific tasks, exhibit limited scalability and poor generalization, particularly in "long-tail scenarios" where rare but critical events occur [3][4] Group 2: Foundational Models - Foundational models, developed through self-supervised or unsupervised learning strategies, leverage large-scale datasets to learn general representations applicable across various downstream tasks [4][5] - These models demonstrate significant advantages in autonomous driving due to their inherent generalization capabilities, efficient transfer learning, and reduced reliance on labeled datasets [4][5] Group 3: Key Capabilities - The four key dimensions for designing foundational models tailored for autonomous driving perception are: 1. General Knowledge: Ability to adapt to a wide range of driving scenarios, including rare situations [5][6] 2. Spatial Understanding: Deep comprehension of 3D spatial structures and relationships [5][6] 3. Multi-Sensor Robustness: Maintaining high performance under varying environmental conditions and sensor failures [5][6] 4. Temporal Reasoning: Capturing temporal dependencies and predicting future states of the environment [6] Group 4: Integration and Challenges - The article outlines three mechanisms for integrating foundational models into autonomous driving technology stacks: feature-level distillation, pseudo-label supervision, and direct integration [37][40] - It highlights the challenges faced in deploying these models, including the need for effective domain adaptation, addressing hallucination risks, and ensuring efficiency in real-time applications [58][61] Group 5: Future Directions - The article emphasizes the importance of advancing research in foundational models to enhance their safety and effectiveness in autonomous driving systems, addressing current limitations and exploring new methodologies [2][5][58]