Workflow
隐空间扩散世界模型LaDi - WM
icon
Search documents
CoRL 2025|隐空间扩散世界模型LaDi-WM大幅提升机器人操作策略的成功率和跨场景泛化能力
机器之心· 2025-08-17 04:28
Core Viewpoint - The article discusses the introduction of LaDi-WM (Latent Diffusion-based World Models), a novel world model that utilizes latent space diffusion to enhance robot operation performance through predictive strategies [2][28]. Group 1: Innovation Points - LaDi-WM employs a latent space representation constructed using pre-trained vision foundation models, integrating both geometric features (derived from DINOv2) and semantic features (derived from Siglip), which enhances the generalization capability for robotic operations [5][10]. - The framework includes a diffusion strategy that iteratively optimizes output actions by integrating predicted states from the world model, leading to more consistent and accurate action results [6][12]. Group 2: Framework Structure - The framework consists of two main phases: world model learning and policy learning [9]. - **World Model Learning**: Involves extracting geometric and semantic representations from observation images and implementing a diffusion process that allows interaction between these representations to improve dynamic prediction accuracy [10]. - **Policy Model Training and Iterative Optimization**: Utilizes future predictions from the world model to guide policy learning, allowing for multiple iterations of action optimization, which reduces output distribution entropy and enhances action prediction accuracy [12][18]. Group 3: Experimental Results - In extensive experiments on virtual datasets (LIBERO-LONG, CALVIN D-D), LaDi-WM demonstrated a significant increase in success rates for robotic tasks, achieving a 27.9% improvement on the LIBERO-LONG dataset, reaching a success rate of 68.7% with minimal training data [15][16]. - The framework's scalability was validated, showing that increasing training data and model parameters consistently improved success rates in robotic operations [18][20]. Group 4: Real-World Application - The framework was also tested in real-world scenarios, including tasks like stacking bowls and opening drawers, where LaDi-WM improved the success rate of original imitation learning strategies by 20% [24][25].