Workflow
Agent Harness
icon
Search documents
红杉对话 LangChain 创始人:2026 年 AI 告别对话框,步入 Long-Horizon Agents 元年
海外独角兽· 2026-01-27 12:33
Core Insights - The article asserts that AGI represents the ability to "figure things out," marking a shift from the era of "Talkers" to "Doers" in AI by 2026, driven by Long Horizon Agents [2] - Long Horizon Agents are characterized by their ability to autonomously plan, operate over extended periods, and exhibit expert-level features across complex tasks, expanding from coding to various domains [3][4] - The emergence of these agents is seen as a significant turning point, with the potential to revolutionize how complex tasks are approached and executed [3][21] Long Horizon Agents' Explosion - Long Horizon Agents are finally beginning to work effectively, with the core idea being to allow LLMs to operate in a loop and make autonomous decisions [4] - The ideal interaction with agents combines asynchronous management and synchronous collaboration, enhancing their utility in various applications [3][4] - The coding domain has seen the most rapid adoption of these agents, with examples like AutoGPT demonstrating their capabilities in executing complex multi-step tasks [4][5] Transition from General Framework to Harness Architecture - The distinction between models, frameworks, and harnesses is crucial, with harnesses being more opinionated and designed for specific tasks, while frameworks are more abstract [8][9] - The evolution of harness engineering is particularly advanced in coding companies, which have successfully integrated these concepts into their products [12][14] - The integration of file system permissions into agents is essential for effective context management and task execution [24] Future Interactions and Production Forms - Memory is identified as a critical component for self-improvement in agents, allowing them to retain and utilize past interactions to enhance performance [35] - The future of agent interaction is expected to blend asynchronous and synchronous modes, facilitating better user engagement and task management [36] - The necessity for agents to access file systems is emphasized, as it significantly enhances their operational capabilities [39]
Build a Research Agent with Deep Agents
LangChain· 2025-11-20 17:02
Deep Agents Overview - Deep Agents is an open-source agent harness incorporating planning, computer access, and sub-agent delegation tools, commonly found in agents like Manis and Cloud Code [1][46] - The harness is designed to be easily adaptable with custom prompts, tools, and sub-agents [2][47] Key Features and Tools - Deep Agents provides built-in tools such as planning, sub-agent delegation, and file system operations [6][7] - The built-in tools enable interaction with the file system, shell command execution, planning via to-dos, and task delegation [8] - Custom tools, instructions, and sub-agents can be added to Deep Agents to tailor it for specific use cases [6][47] Quick Start and Research Application - The Deep Agent quick start repo offers examples for different use cases, starting with research [2][5] - The research quick start includes tools like a search tool (using Tavi search API) and an optional "think" tool for auditing agent trajectory [12][13][14] - Task-specific instructions and sub-agents can be supplied to Deep Agents for any given use case [12] Agent Loop and Middleware - Deep Agents utilizes Langraph for orchestrating the agent loop, which involves the language model (LLM) calling tools in a loop [29] - Middleware serves as hooks within the agent loop, allowing for actions like summarization when context exceeds 170,000 tokens [30][32] - Middleware can provide tools to the agent, such as file system middleware, and perform actions like summarization and prompt caching [31][34] File System and State Management - By default, Deep Agents writes to an internal in-memory state object, but it supports different backends like a sandbox or local file system [37][38] - File reading and writing operations occur within the Langraph state object, enabling easy retrieval into the LLM's context window [40] Deployment and Visualization - Deep Agents can be run in a Jupyter notebook for interactive inspection or deployed as an application using Langraph [10][44] - A UI can be connected to the local Langraph server for visualizing generated files and agent interactions [3][45]
Building a Typescript deep research agent
LangChain· 2025-11-06 18:30
Check this out. I just asked an agent to answer one of the world's greatest debates. Is Messi or Ronaldo the greatest soccer player of all time.This isn't an easy question to answer, and it definitely requires a good amount of research. The agent automatically spawned two parallel sub agents to look into each of their achievements. This meant searching the web over a dozen times, compiling a comprehensive report with cited sources.To be extra thorough, the agent then critiqued its own report and plugged any ...