Agent Harness
Search documents
Build a Research Agent with Deep Agents
LangChain· 2025-11-20 17:02
Deep Agents Overview - Deep Agents is an open-source agent harness incorporating planning, computer access, and sub-agent delegation tools, commonly found in agents like Manis and Cloud Code [1][46] - The harness is designed to be easily adaptable with custom prompts, tools, and sub-agents [2][47] Key Features and Tools - Deep Agents provides built-in tools such as planning, sub-agent delegation, and file system operations [6][7] - The built-in tools enable interaction with the file system, shell command execution, planning via to-dos, and task delegation [8] - Custom tools, instructions, and sub-agents can be added to Deep Agents to tailor it for specific use cases [6][47] Quick Start and Research Application - The Deep Agent quick start repo offers examples for different use cases, starting with research [2][5] - The research quick start includes tools like a search tool (using Tavi search API) and an optional "think" tool for auditing agent trajectory [12][13][14] - Task-specific instructions and sub-agents can be supplied to Deep Agents for any given use case [12] Agent Loop and Middleware - Deep Agents utilizes Langraph for orchestrating the agent loop, which involves the language model (LLM) calling tools in a loop [29] - Middleware serves as hooks within the agent loop, allowing for actions like summarization when context exceeds 170,000 tokens [30][32] - Middleware can provide tools to the agent, such as file system middleware, and perform actions like summarization and prompt caching [31][34] File System and State Management - By default, Deep Agents writes to an internal in-memory state object, but it supports different backends like a sandbox or local file system [37][38] - File reading and writing operations occur within the Langraph state object, enabling easy retrieval into the LLM's context window [40] Deployment and Visualization - Deep Agents can be run in a Jupyter notebook for interactive inspection or deployed as an application using Langraph [10][44] - A UI can be connected to the local Langraph server for visualizing generated files and agent interactions [3][45]
Building a Typescript deep research agent
LangChain· 2025-11-06 18:30
Check this out. I just asked an agent to answer one of the world's greatest debates. Is Messi or Ronaldo the greatest soccer player of all time.This isn't an easy question to answer, and it definitely requires a good amount of research. The agent automatically spawned two parallel sub agents to look into each of their achievements. This meant searching the web over a dozen times, compiling a comprehensive report with cited sources.To be extra thorough, the agent then critiqued its own report and plugged any ...