Workflow
Langraph
icon
Search documents
Open Deep Research
LangChain· 2025-07-16 16:01
Hi there. Today you're going to learn all about the Langchain deep research agent and how you can use it as a starting point for your projects. It's highly configurable and allows you to add your own MCP servers and is open source so you can tailor it to your own specific use cases.Let's see how it works. So later this year, my roommates and I want to take a trip to Amsterdam and Norway. We want to leave New York on September 12th and get back on the following Sunday.I want to ask Deep Research if it can he ...
Context Engineering for Agents
LangChain· 2025-07-02 15:54
Context Engineering Overview - Context engineering is defined as the art and science of filling the context window with the right information at each step of an agent's trajectory [2][4] - The industry categorizes context engineering strategies into writing context, selecting context, compressing context, and isolating context [2][12] - Context engineering is critical for building agents because they typically handle longer contexts [10] Context Writing and Selection - Writing context involves saving information outside the context window, such as using scratch pads for note-taking or memory for retaining information across sessions [13][16][17] - Selecting context means pulling relevant context into the context window, including instructions, facts, and tools [12][19][20] - Retrieval-augmented generation (RAG) is used to augment the knowledge base of LLMs, with code agents being a large-scale application [27] Context Compression and Isolation - Compressing context involves retaining only the most relevant tokens, often through summarization or trimming [12][30] - Isolating context involves splitting up context to help an agent perform a task, with multi-agent systems being a primary example [12][35] - Sandboxing can isolate token-heavy objects from the LLM context window [39] Langraph Support for Context Engineering - Langraph, a low-level orchestration framework, supports context engineering through features like state objects for scratchpads and built-in long-term memory [44][45][48] - Langraph facilitates context selection from state or long-term memory and offers utilities for summarizing and trimming message history [50][53] - Langraph supports context isolation through multi-agent implementations and integration with sandboxes [55][56]
Getting Started with LangSmith (1/7): Tracing
LangChain· 2025-06-25 00:47
Langsmith Platform Overview - Langsmith is an observability and evaluation platform for AI applications, focusing on tracing application behavior [1] - The platform uses tracing projects to collect logs associated with applications, with each project corresponding to an application [2] - Langsmith is framework agnostic, designed to monitor AI applications regardless of the underlying build [5] Tracing and Monitoring AI Applications - Tracing is enabled by importing environment variables, including Langmouth tracing, Langmith endpoint, and API key [6] - The traceable decorator is added to functions to enable tracing within the application [8] - Langsmith provides a detailed breakdown of each step within the application, known as the run tree, showing inputs, outputs, and telemetry [12][14] - Telemetry includes token cost and latency of each step, visualized through a waterfall view to identify latency sources [14][15] Integration with Langchain and Langraph - Langchain and Langraph, Langchain's open-source libraries, work out of the box with Langsmith, simplifying tracing setup [17] - When using Langraph or Langchain, the traceable decorator is not required, streamlining the tracing process [17]
How Outshift by Cisco achieved a 10x productivity boost with JARVIS, their AI Platform Engineer
LangChain· 2025-06-11 17:00
Agentic Platform Engineering Implementation - Outshift by Cisco is redefining platform engineering with agentic platform engineering, aiming to automate workflows and allow platform engineers to focus on high-value work [1][2] - The company built Jarvis, a genai-powered multi-agentic system, to automate tasks and improve efficiency [2] - Langraph, combined with Langsmith's observability tools, enables debugging agentic applications and improving reasoning capabilities at scale [6] Efficiency Improvement - Implementing Jarvis allows developers to self-service through genai-powered automation, eliminating manual toil [4] - CI/CD pipeline setup time reduced from a week to less than an hour [7] - Resource provisioning time (e.g., S3 buckets, EC2 instances, access keys) reduced from half a day to nearly instantaneous [7] - The company has eliminated unnecessary back and forth between developers and SREs [7] Workflow Transformation - The company shifted from traditional automation to agentic reasoning-based workflows by adopting Langraph [5] - Developers interact with Jarvis for platform-related questions and configurations, retrieving information autonomously [8] - The new system allows the company to handle a higher volume of requests with the same team while reducing burnout [8] Technology Evaluation - Langraph's tight integration with Langsmith, especially for debugging and evaluations, is a significant advantage [9] - The company found Langraph to be superior compared to other agentic solutions or custom-built alternatives [9]