Agentic RL
Search documents
大模型最难的AI Infra,用Vibe Coding搞定
机器之心· 2026-01-07 05:16
Core Insights - The article discusses the challenges and potential of Vibe Coding in AI infrastructure development, highlighting its limitations in complex systems and proposing a document-driven approach to enhance its effectiveness [3][5][20]. Group 1: Challenges of Vibe Coding - Vibe Coding faces three main issues: context loss, decision deviation, and quality instability, primarily due to the lack of a structured decision management mechanism [4][5]. - The complexity of AI infrastructure, characterized by thousands of lines of code and numerous interrelated decision points, exacerbates these challenges [4][5]. Group 2: Document-Driven Vibe Coding Methodology - The document-driven approach aims to systematize key decisions during the design phase, significantly reducing complexity and improving code quality [6][20]. - By focusing on high-level design decisions, developers can leverage AI for detailed code implementation, achieving complex functionalities with minimal coding [7][20]. Group 3: Implementation in Agentic RL - The article presents a case study on optimizing GPU utilization in Agentic Reinforcement Learning (RL) systems, which face significant resource scheduling challenges [11][12]. - A proposed time-sharing reuse scheme dynamically allocates GPU resources, addressing the inefficiencies of existing solutions and improving overall system performance [14][15]. Group 4: Performance Validation - Experiments on a large-scale GPU cluster demonstrated that the time-sharing reuse scheme increased rollout throughput by 3.5 times compared to traditional methods, significantly enhancing task completion rates and reducing timeout occurrences [46][50]. - The analysis indicates that the additional system overhead introduced by the new scheme is minimal, validating its practical value in large-scale Agentic RL training [53][55]. Group 5: Team and Future Directions - The article concludes with an introduction to the ROCK & ROLL team, which focuses on advancing RL technologies and enhancing the practical application of large language models [57]. - The team emphasizes collaboration and open-source contributions to foster innovation in the RL community [58].
自搜索强化学习SSRL:Agentic RL的Sim2Real时刻
机器之心· 2025-09-02 01:27
Core Insights - The article discusses the development and effectiveness of SSRL (Structured Search Reinforcement Learning) in enhancing the training efficiency and stability of Search Agents using large language models (LLMs) [6][28] - SSRL demonstrates superior performance over traditional methods that rely on external search engines, achieving effective transfer from simulation to real-world applications (Sim2Real) [6][28] Group 1 - SSRL utilizes structured prompts and format rewards to effectively extract world knowledge from models, leading to improved performance across various benchmarks and reduced hallucination [2][6] - The research highlights the high costs and inefficiencies associated with current RL training methods for Search Agents, which include full-real and semi-real search approaches [7][13] - The introduction of SSRL allows for a significant increase in training efficiency, estimated at approximately 5.6 times, while maintaining a continuous increase in training rewards without collapse [31][32] Group 2 - Experiments show that models trained with SSRL outperform those relying on external engines, particularly in real-world search scenarios, indicating the importance of integrating real-world knowledge [28][31] - The article presents findings that suggest the combination of self-generated knowledge and real-world knowledge can enhance model performance, particularly through entropy-guided search strategies [34] - The integration of SSRL with TTRL (Task-Driven Reinforcement Learning) has shown to improve generalization and effectiveness, achieving up to a 67% performance increase in certain tasks [38][39]