Workflow
BDI(信念 - 愿望 - 意图)架构
icon
Search documents
AI Agents与Agentic AI的范式之争?
自动驾驶之心· 2025-09-12 16:03
Core Viewpoint - The article discusses the evolution and differentiation between AI Agents and Agentic AI, highlighting their respective roles in automating tasks and collaborating on complex objectives, with a focus on the advancements since the introduction of ChatGPT in November 2022 [2][10][57]. Group 1: Evolution of AI Technology - The development of AI technology has progressed from early expert systems like MYCIN to modern AI Agents and Agentic AI, marking a significant paradigm shift in capabilities [10][11]. - ChatGPT's release in November 2022 is identified as a pivotal moment that catalyzed the evolution of AI Agents, transitioning from passive responders to more autonomous systems capable of executing multi-step tasks [12][24]. - The introduction of frameworks like AutoGPT and BabyAGI in 2023 signifies the formal establishment of AI Agents, which integrate LLMs with external tools to perform complex tasks [12][24]. Group 2: Characteristics of AI Agents - AI Agents are defined as modular systems driven by LLMs and LIMs, designed for task automation, filling the gap where generative AI lacks execution capabilities [13][16]. - Three core features distinguish AI Agents from traditional automation scripts: autonomy, task-specificity, and reactivity [16][17]. - The integration of tools allows AI Agents to overcome limitations of static knowledge and hallucination issues, enabling them to perform real-time data retrieval and processing [19][20]. Group 3: Agentic AI and Multi-Agent Collaboration - Agentic AI represents a shift towards multi-agent collaboration, where multiple AI Agents work together to achieve complex goals, enhancing system-level intelligence [24][27]. - The architecture of Agentic AI includes dynamic task decomposition and shared memory, facilitating efficient collaboration among specialized agents [33][36]. - Real-world applications of Agentic AI demonstrate its advantages in various fields, such as healthcare and agriculture, where multiple agents coordinate to optimize processes [37][38]. Group 4: Challenges and Future Directions - Both AI Agents and Agentic AI face challenges, including causal reasoning deficits and coordination issues among multiple agents [48][50]. - Proposed solutions include enhancing retrieval-augmented generation (RAG), implementing causal modeling, and establishing shared memory architectures to improve collaboration and decision-making [49][53]. - The future roadmap emphasizes the need for deeper causal reasoning, transparency in decision-making, and ethical governance to ensure the responsible deployment of AI technologies [56][59].