Workflow
Brain Science
icon
Search documents
Brain Science at the Intersection of Tradition and Innovation | Dr. Mohammmad Nami | TEDxDGPS Youth
TEDx Talks· 2025-09-29 16:14
It's about the intersection of tradition and innovation when it comes to neuroscience, the brain science. How about that. What do you think about it.Somewhere around 2,500 years ago, the Buddhist monks used to be sitting and doing mindful meditation, claiming that is actually transforming the minds. But today, us neuroscientists in academia, in top-notch academic centers, we sit, we think, and we formulate ways to understand the brain dynamics. We attach sensors to the brain surface. We use other methods to ...
华人学者本周发表8篇Cell论文,在AI、脑科学、光遗传学、合成生物学、结构生物学领域取得新突破
生物世界· 2025-07-12 08:30
Core Insights - The article highlights significant advancements in various fields of research published in the journal Cell, with a notable contribution from Chinese scholars, indicating a strong presence in cutting-edge scientific research [1]. Group 1: Measles Virus Research - A study by Zhang Heqiao and Roger Kornberg's team elucidated the structure of the measles virus polymerase complex and its interaction with non-nucleoside inhibitors, laying the groundwork for rational antiviral drug design [3][4]. Group 2: AI in Protein Engineering - The research team led by Gao Caixia developed a novel AI protein engineering simulation method called AiCE, which integrates structural and evolutionary constraints, enabling efficient protein evolution simulation and functional design without the need for specialized AI model training [7]. Group 3: Vertebrate Genomics - The team from Zhejiang University introduced a high-throughput, sensitive single-nucleus ATAC sequencing technology (UUATAC-seq) to create chromatin accessibility maps, and developed the Nvwa model for predicting cis-regulatory elements, revealing the conserved syntax of vertebrate regulatory sequences [10][11]. Group 4: Primate Brain Research - A study identified cell type-specific enhancers in the macaque brain, establishing tools for understanding primate brain structure and diseases, which could enhance insights into cognitive functions [15]. Group 5: Peripheral Nerve Imaging - Researchers from the University of Science and Technology of China pioneered a high-speed, subcellular resolution imaging technique for whole-mouse peripheral nerves, providing a detailed peripheral nerve atlas and new tools for studying nerve regulation and disease mechanisms [19]. Group 6: Primate Prefrontal Cortex Connectivity - A study reconstructed the whole-brain connectivity network of the macaque prefrontal cortex at the single-neuron level, revealing refined axon targeting and arborization, which is crucial for understanding complex cognitive functions in primates [23]. Group 7: Optogenetics in Drug Discovery - The research led by Felix Wong developed an optogenetics platform for discovering selective modulators of the integrated stress response, identifying compounds that enhance cell death without toxicity, and demonstrating antiviral activity in a herpes simplex virus mouse model [27][28]. Group 8: Engineering Yeast Behavior - A study from Imperial College London established engineering principles for yeast, enabling programmable multicellular behaviors, transforming yeast from a "single-cell factory" to a "multicellular system chassis" [33][34].