KV - Cache

Search documents
回应撤离中国市场原因,Manus首度披露技术侧经验教训
Di Yi Cai Jing· 2025-07-19 06:17
Core Insights - Manus has withdrawn from the Chinese market and is focusing on international expansion, citing operational efficiency adjustments and internationalization strategies as the main reasons for this shift [2] - The co-founder of Manus, Ji Yichao, emphasized the importance of context engineering in their technology strategy, aiming to enhance product iteration speed by leveraging memory and process construction [2][4] - The company has learned from past experiences, particularly from their previous venture, Peak Labs, and has decided to avoid investing in foundational model development, instead opting to utilize open-source models for training [5] Context Engineering - Context in large models refers to the information set that models reference when processing tasks or generating outputs, which enhances understanding and performance [3] - The concept of Lossless Long Context is crucial for AI-native products, as it allows for personalized interactions by effectively utilizing user interaction history [3] - The Key-Value Cache (KV-Cache) hit rate is vital for improving inference efficiency and optimizing resource utilization, thereby reducing computational costs [3] Lessons Learned - Ji Yichao reflected on the lessons learned from Peak Labs, where the decision to develop a model from scratch became irrelevant after the emergence of advanced models like OpenAI's GPT-3 [4] - The Manus team has undergone multiple adjustments to their Agent framework to achieve a locally optimal solution, recognizing the challenges of relying on external models for task execution [5] - Despite the focus on efficiency, Manus faces limitations compared to competitors like OpenAI, which utilize proprietary models for better handling of complex tasks [5] Market Challenges - As Manus shifts to the international market, it faces competition from larger platforms that attract developers and users, posing a threat to market share for startups [5] - The current landscape for Agent products is characterized by significant homogenization, unclear business models, and high costs, making it challenging for startups to differentiate themselves [5] - Continuous optimization of technical strategies and exploration of differentiated development paths are essential for Manus to navigate these market challenges [5]