LangChain

Search documents
X @Avi Chawla
Avi Chawla· 2025-08-08 06:34
In this demo, we used mcp-use.It lets us connect LLMs to MCP servers & build local MCP clients in a few lines of code.- Compatible with Ollama & LangChain- Stream Agent output async- Built-in debugging mode, etcRepo: https://t.co/PWcuwMFvzi(don't forget to star ⭐) ...
How 11x Rebuilt Their Alice Agent: From React to Multi-Agent with LangGraph| LangChain Interrupt
LangChain· 2025-06-16 16:36
Company Overview - 11X is building digital workers, including Alice, an AI SDR, and Julian, an AI voice agent [1] - The company relocated from London to San Francisco and rebuilt its core product, Alice, from the ground up [2] Alice Rebuild & Vision - The rebuild of Alice was driven by the belief that agents are the future [3] - The new vision for Alice centers on seven agentic capabilities, including chat-based interaction, knowledge base training via document uploads, AI-driven lead sourcing, deep lead research, personalized emails, automatic handling of inbound messages, and self-learning [11][12][13] Development Process & Tech Stack - The rebuild of Alice 2 took only 3 months from the first commit to migrating the last business customer [3][14] - The company chose a vanilla tech stack and leveraged vendors like Langchain to move quickly [15][16][17] - Langchain was chosen as a key partner due to its AI dev tools, agent framework, cloud hosting, observability, Typescript support, and customer support [18][19] Agent Architecture Evolution - The company experimented with three different architectures for campaign creation: React, workflow, and multi-agent systems [21] - The final architecture was a multi-agent system with a supervisor and specialized sub-agents for research, positioning, LinkedIn messaging, and email writing [44][45][46] Results & Future Plans - Alice 2 went live in January and has sourced close to 2 million leads and sent close to 3 million messages [52] - Alice 2 has generated about 21,000 replies, with a reply rate of around 2%, on par with a human SDR [52] - Future plans include integrating Alice and Julian, implementing self-learning, and exploring new technologies like computer use, memory, and reinforcement learning [53][54]
How LinkedIn Built Their First AI Agent for Hiring with LangGraph | LangChain Interrupt
LangChain· 2025-06-13 17:16
Agent Adoption & Scalability - LinkedIn aims to scale agentic adoption within the organization to enable broader idea generation [2] - LinkedIn built the Hiring Assistant, its first production agent, to automate recruiter tasks and free up time for candidate interaction [3] - The Hiring Assistant follows an ambient agent pattern, operating in the background and notifying recruiters upon completion [4][5] - LinkedIn adopted a supervisor multi-agent architecture, with a supervisor agent coordinating sub-agents that interact with LinkedIn services [6] Technology Stack & Framework - LinkedIn standardized on Python for GenAI development, moving away from its traditional Java-centric approach [7][8] - The company built a service framework using Python, gRPC, Langchain, and Langraph to streamline the creation of production-ready Python services [9][19] - Over 20 teams have used this framework to create over 30 services supporting Generative AI product experiences [9][10] - Langchain and Langraph were chosen for their ease of use and sensible interfaces, enabling rapid development and integration with internal infrastructure [22][23] Infrastructure & Architecture - LinkedIn invested in a distributed architecture to support agentic communication modes [10] - The company modeled long-running asynchronous flows as a messaging problem, leveraging its existing messaging service for agent-to-agent and user-to-agent communication [26][27] - LinkedIn developed agentic memory with scoped and layered memory types (working, long-term, collective) [29][30] - LinkedIn implemented a centralized skill registry, allowing agents to discover and access skills developed by different teams [34][35]