Workflow
SDK范式
icon
Search documents
135 个项目、七大趋势、三大赛道:撕开大模型开源生态真相,你会怎么卷?
机器之心· 2025-05-29 07:10
Core Viewpoint - The article emphasizes the importance of understanding trends in the rapidly evolving AI landscape, particularly in the context of open-source projects and their development trajectories [2][6]. Group 1: Overview of Open-Source Landscape - Ant Group's open-source team released a comprehensive "2025 Large Model Open-Source Development Ecosystem Panorama," detailing 135 core projects across 19 technical domains, highlighting the significant role of open-source in the large model wave [2][6]. - The three dominant technical tracks identified are model training frameworks, efficient inference engines, and low-code application development frameworks [2][6]. Group 2: Project Rankings and Trends - The top 20 projects in the 2025 OpenRank ranking include notable names like PyTorch, vLLM, and Dify, showcasing their community engagement and technical impact [3][6]. - A comparison of OpenRank indicators from 2024 shows significant year-on-year growth in the three leading technical tracks, indicating a shift in focus towards more practical applications [6][14]. Group 3: Market Dynamics and Project Viability - The article discusses the "hackathon phenomenon," where many projects gain rapid attention but also face high turnover rates, leading to a challenging environment for sustainability [8][10]. - AI coding projects are thriving, with OpenRank trends showing consistent upward movement, contrasting with the decline of AI search projects [11][26]. Group 4: Future Trends and Predictions - Seven key trends have emerged from tracking the activity and community feedback of 135 core projects, with a notable shift towards low-code platforms and user-centric applications [17][20]. - The article predicts that by 2025, low-code platforms will dominate, reflecting a transition from developer-focused tools to more accessible solutions for end-users [21][26]. Group 5: Technical Innovations and Challenges - The article highlights the advancements in model training and inference, particularly the emergence of tools like vLLM and SGLang, which are reshaping the deployment landscape [34][36]. - It also points out the ongoing need for new protocols to facilitate agent collaboration, indicating a significant area for future innovation within the open-source community [25][26].