Visual Language Model

Search documents
双非研究生,今年找工作有些迷茫。。。
自动驾驶之心· 2025-07-14 14:04
Core Viewpoint - The article emphasizes the importance of staying updated with cutting-edge technologies in the fields of autonomous driving and embodied intelligence, highlighting the need for strong technical skills and knowledge in advanced areas such as large models, reinforcement learning, and 3D graphics [4][5]. Group 1: Industry Trends - There is a growing demand for talent in the fields of robotics and embodied intelligence, with many startups receiving significant funding and showing rapid growth potential [4][5]. - Major companies are shifting their focus towards more advanced technologies, moving from traditional methods to end-to-end solutions and large models, indicating a technological evolution in the industry [4][5]. - The community aims to build a comprehensive ecosystem that connects academia, products, and recruitment, fostering a collaborative environment for knowledge sharing and job opportunities [6]. Group 2: Technical Directions - The article outlines four key technical directions in the industry: visual large language models, world models, diffusion models, and end-to-end autonomous driving [9]. - It provides resources and summaries of various research papers and datasets related to these technologies, indicating a strong emphasis on research and development [10][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][35][36][38]. Group 3: Community and Learning Resources - The community offers a variety of learning materials, including video courses, hardware, and coding resources, aimed at equipping individuals with the necessary skills for the evolving job market [6]. - There is a focus on creating a supportive environment for discussions on the latest industry trends, technical challenges, and job opportunities, which is crucial for professionals looking to advance their careers [6].
4000人的自动驾驶黄埔军校,死磕技术分享与求职交流~
自动驾驶之心· 2025-07-12 14:43
Core Viewpoint - The smart driving industry is experiencing significant growth, with companies willing to invest heavily in research and talent acquisition, indicating a robust job market and opportunities for new entrants [2][3]. Group 1: Industry Trends - The smart driving sector continues to attract substantial funding for research and development, with companies offering competitive salaries to attract talent [2]. - There is a noticeable trend of shorter technology iteration cycles in the autonomous driving field, with a focus on advanced technologies such as visual large language models (VLA) and end-to-end systems [7][11]. Group 2: Community and Learning Resources - The "Autonomous Driving Heart Knowledge Planet" aims to create a comprehensive community for knowledge sharing, focusing on academic and engineering challenges in the autonomous driving industry [3][11]. - The community has established a structured learning path covering various aspects of autonomous driving technology, including perception, planning, and control [13][15]. Group 3: Educational Offerings - The community offers a range of educational resources, including video courses, hardware tutorials, and live sessions with industry experts, aimed at both newcomers and experienced professionals [3][15]. - There are dedicated modules for job preparation, including resume sharing and interview experiences, to help members navigate the job market effectively [5][12]. Group 4: Technical Focus Areas - Key technical areas of focus include visual language models, world models, and end-to-end autonomous driving systems, with ongoing discussions about their integration and application in real-world scenarios [11][36]. - The community emphasizes the importance of understanding the latest advancements in algorithms and models, such as diffusion models and generative techniques, for future developments in autonomous driving [16][36].
4000人的自动驾驶黄埔军校,死磕技术分享与求职交流~
自动驾驶之心· 2025-07-12 05:41
Core Insights - The autonomous driving industry is experiencing significant changes, with many professionals transitioning to related fields like embodied intelligence, while others remain committed to the sector due to strong funding and high salaries for new graduates [2][6] - The article emphasizes the importance of networking and community engagement for knowledge acquisition and job preparation in the autonomous driving field [3][4] Group 1: Industry Trends - The autonomous driving sector continues to attract substantial investment, with companies willing to offer competitive salaries to attract talent [2] - The technology iteration cycle in autonomous driving is becoming shorter, indicating rapid advancements and a focus on cutting-edge technologies such as visual large language models (VLM) and end-to-end systems [8][12] Group 2: Community and Learning Resources - The "Autonomous Driving Heart Knowledge Planet" is highlighted as a leading community for professionals and students in the autonomous driving field, offering resources such as video courses, technical discussions, and job opportunities [4][14] - The community provides a structured learning path covering various aspects of autonomous driving technology, including perception, planning, and machine learning [19][21] Group 3: Technical Focus Areas - Key technical areas identified for 2025 include VLM, end-to-end systems, and world models, which are crucial for the future evolution of autonomous driving technology [8][43] - The community emphasizes the integration of advanced algorithms and models, such as diffusion models and 3D generative simulations, to enhance autonomous driving capabilities [15][22]
2025秋招开始了,这一段时间有些迷茫。。。
自动驾驶之心· 2025-07-08 07:53
Core Viewpoint - The article discusses the current trends and opportunities in the fields of autonomous driving and embodied intelligence, emphasizing the need for strong technical skills and knowledge in cutting-edge technologies for job seekers in these areas [3][4]. Group 1: Job Market Insights - The job market for autonomous driving and embodied intelligence is competitive, with a high demand for candidates with strong backgrounds and technical skills [2][3]. - Companies are increasingly looking for expertise in advanced areas such as end-to-end models, visual language models (VLM), and reinforcement learning [3][4]. - There is a saturation of talent in traditional robotics, but many startups in the robotics sector are rapidly growing and attracting significant funding [3][4]. Group 2: Learning and Development - The article encourages individuals to enhance their technical skills, particularly in areas like SLAM (Simultaneous Localization and Mapping) and ROS (Robot Operating System), which are relevant to robotics and embodied intelligence [3][4]. - A community platform is mentioned that offers resources such as video courses, hardware learning materials, and job information, aiming to build a large network of professionals in intelligent driving and embodied intelligence [5]. Group 3: Technical Trends - The article highlights four major technical directions in the industry: visual language models, world models, diffusion models, and end-to-end autonomous driving [8]. - It provides links to various resources and papers related to these technologies, indicating a focus on the latest advancements and applications in the field [9][10].
双非研究生,今年找工作有些迷茫。。。
自动驾驶之心· 2025-06-30 05:51
Core Viewpoint - The article emphasizes the importance of advanced skills and knowledge in the fields of autonomous driving and embodied intelligence, highlighting the need for candidates with strong backgrounds to meet industry demands. Group 1: Industry Trends - The demand for talent in autonomous driving and embodied intelligence is increasing, with a focus on cutting-edge technologies such as SLAM, ROS, and large models [3][4]. - Many companies are transitioning from traditional methods to more advanced techniques, indicating a shift in the required skill sets for job seekers [3][4]. - The article notes that while there is a saturation of talent in certain areas, the growth of startups in robotics presents new opportunities for learning and development [3][4]. Group 2: Learning and Development - The article encourages individuals to enhance their technical skills, particularly in areas related to robotics and embodied intelligence, which are seen as the forefront of technology [3][4]. - It mentions the availability of resources and community support for learning, including access to courses, hardware, and job information through platforms like Knowledge Planet [5][6]. - The community aims to create a comprehensive ecosystem for knowledge sharing and recruitment in the fields of intelligent driving and embodied intelligence [5][6]. Group 3: Technical Directions - The article outlines four major technical directions in the industry: visual large language models, world models, diffusion models, and end-to-end autonomous driving [7]. - It highlights the importance of staying updated with the latest research and developments in these areas, providing links to various resources and papers for further exploration [8][9].
100+自动驾驶数据集,这5个你总得知道吧?
自动驾驶之心· 2025-06-22 01:35
Core Viewpoint - The article emphasizes the growing importance of autonomous driving technology and highlights the availability of over 100 high-quality datasets for developers and researchers in the field. It introduces five key datasets that cover various tasks from perception to visual odometry, providing valuable resources for both beginners and experienced engineers [2]. Dataset Summaries 1. KITTI Dataset - The KITTI dataset is one of the most classic and widely used benchmark datasets in the autonomous driving field. It was collected in Karlsruhe, Germany, using high-precision sensors such as stereo color/gray cameras, Velodyne 3D LiDAR, and GPS/IMU. The dataset includes annotations for various perception tasks, including stereo vision, optical flow, visual odometry, and 3D object detection and tracking, making it a standard for evaluating vehicle vision algorithms [3]. 2. nuScenes Dataset - nuScenes is a large-scale multi-sensor dataset released by Motional, covering 1,000 continuous driving scenes in Boston and Singapore, totaling approximately 15 hours of data. It includes a full suite of sensors: six cameras, five millimeter-wave radars, one top-mounted LiDAR, and IMU/GPS. The dataset provides around 1.4 million high-resolution camera images and 390,000 LiDAR scans, annotated with 3D bounding boxes for 23 object categories, making it suitable for research on complex urban road scenarios [5][7]. 3. Waymo Open Dataset - The Waymo Open Dataset, released by Google Waymo, is one of the largest open data resources for autonomous driving. It consists of two main parts: a perception dataset with 2,030 scenes of high-resolution camera and LiDAR data, and a motion dataset with 103,354 vehicle trajectories and corresponding 3D map information. This extensive multi-sensor dataset covers various times, weather conditions, and urban environments, serving as a benchmark for target detection, tracking, and trajectory prediction research [10][12]. 4. PathTrack Dataset - PathTrack is a dataset focused on person tracking, containing over 15,000 trajectories across 720 sequences. It utilizes a re-trained existing person matching network, significantly reducing the classification error rate. The dataset is suitable for 2D/3D object detection, tracking, and trajectory prediction tasks [13][14][15]. 5. ApolloScape Dataset - ApolloScape, released by Baidu Apollo, is a massive autonomous driving dataset characterized by its large volume and high annotation accuracy. It reportedly exceeds similar datasets in size by over ten times, containing hundreds of thousands of high-resolution images with pixel-level semantic segmentation annotations. ApolloScape defines 26 different semantic categories and includes complex road scenarios, making it applicable for perception, map construction, and simulation training [17][19].