Workflow
multi-agent
icon
Search documents
人工智能领域青年学者杨健:人人可编程的时代正在到来
Huan Qiu Wang Zi Xun· 2025-07-07 10:57
Core Insights - The event highlighted the transformative impact of artificial intelligence (AI) on software development, emphasizing its evolution from a supportive tool to an intelligent collaborator [1][4][7] - AI-driven tools are enhancing productivity, reducing errors, and accelerating innovation across various stages of the software lifecycle [2][4] - The emergence of large language models (LLMs) is enabling more individuals to engage in programming, thus democratizing software development [3][5][6] Group 1: AI's Role in Software Development - AI is fundamentally changing software engineering by improving speed, accessibility, and reliability, making programming more mainstream [4][7] - Large language models, such as those developed by OpenAI, are capable of understanding and generating human language, which is now being applied to code generation and program development [2][3] - Code LLMs can assist developers in writing, debugging, and refactoring code, thereby enhancing the overall development process [3][4] Group 2: Future Trends in Programming - The future of programming is expected to be characterized by higher automation, stronger collaboration, and deeper integration of AI [4][7] - AI programming tools are evolving to become more intuitive, allowing developers to describe tasks in natural language and receive corresponding code outputs [5][6] - Multi-agent systems are anticipated to play a significant role in automating complex tasks and optimizing workflows in software development [6][7] Group 3: Innovations in AI Programming Tools - Cognition AI has introduced Devin, the first AI programmer capable of managing the entire software development lifecycle autonomously, outperforming existing models like GPT-4 in real-world problem-solving [6] - AI-driven integrated development environments (IDEs) like Cursor simplify the coding process by allowing natural language input to generate and modify code [5][6] - The rise of low-code and no-code platforms is enabling non-programmers to participate in software development, further broadening the scope of who can engage in coding [7]
京东抢人,薪酬不设上限
争抢AI人才,京东是认真的。 6月26日,在京东技术沙龙零售专场线下Open Day活动上,京东集团雇主品牌&TGT项目负责人向 《21CBR》表示,京东目前在AI顶尖人才招募上进展顺利,"TGT的候选人正在持续增加中"。 TGT,是其5月推出的顶尖青年技术天才项目,面向全球高校本硕博在校生、应届生及毕业两年内的技 术人才,开放招募,打出"薪酬不设上限"的旗号。 京东方面透露,不到50天的时间里,团队已与清华、北大、上海交通大学等国内外几十所院校、千名师 生进行了深度交流,招募涵盖的领域,涉及多模态大模型与应用、机器学习、搜索推荐广告等8大方 向。 积极抢人背后,是京东的AI布局,逐渐深入业务场景和产业。 数据显示,今年京东618期间,大模型调用量相较去年双十一上升130%。 目前,已有超过1.4万个AI智能体,在京东内部运行。超100万京东商家正在使用京小智服务客户,1.7 万京东商家使用京东数字人直播带货。 举例而言,在商家经营环节,京东商家智能助手,能辅助商家应对平台传递的各类信息、了解店铺经营 状况等。 其算法底座,基于大语言模型(LLM)构建的Multi-agent系统,模拟现实中电商商家团队的经营 ...
对谈斯坦福 Biomni 作者黄柯鑫:AI Scientist 领域将出现 Cursor 级别的机会|Best Minds
海外独角兽· 2025-06-20 11:18
嘉宾:黄柯鑫 访谈:Penny、Cage 随着语言模型在强化学习和 agentic 领域的进步,agent 正在从通用领域快速渗透到垂直领域,科学和生物医药这类高价值领域尤其受到关注。如 果说 AlphaFold 在 foundation model 层面是生命科学的重要里程碑,AI scientist 就是在 agent 层面,能够给科研带来和 alphafold 同样重要的影响。 今年 5 月,前谷歌 CEO Eric Schmidt 投资的 AI lab FutureHouse 推出了四款 AI scientist agent,一个月后,他们又宣布自己的 AI 系统 Robin 成功发 现了新药。两天前,OpenAI 也发布博客强调 AI 在生物学领域的能力正在不断增强。AI scientist 已经在改写科研和药物开发范式。 随着 multi-agent 技术的发展,AI 可能不再只是"工具箱",而是能自主完成跨学科复杂研究,从而推动科学发现走向全新模式。 最近,斯坦福大学也发布了一个生物医学通用 agent Biomni,Biomni 搭建了一个适合 agent 的环境,通过整合不同的工具、数据库、 ...
Vizient’s Healthcare AI Platform: Scaling LLM Queries with LangSmith and LangGraph
LangChain· 2025-06-18 15:01
[Music] Hi, I'm Blake Rhodess, director of AI strategy and technology at Vizian. Vizian is a healthcare performance improvement company. Our clients make up 97% of academic medical centers in the US, more than 69% of the acute care hospitals, and over 35% of the amulatory market.We are building a generative AI platform designed to help healthcare providers access and analyze their data more efficiently. Our goal is to unify silo data sets and enable users to extract key insights from patient outcomes to cli ...
How 11x Rebuilt Their Alice Agent: From React to Multi-Agent with LangGraph| LangChain Interrupt
LangChain· 2025-06-16 16:36
[Music] Hey everyone, how's it going. Um, my name is Sherwood. I am one of the tech leads here at 11X.I lead engineering for our Alice product and today I'm joined by Keith, our head of growth, who is the uh the product manager for this Alice project. Now 11X, for those of you who are unfamiliar, is a company that's building digital workers. We have two digital workers today.The first is Alice. She's our AI SDR. And the second is Julian.He's an AI voice agent. And we've got more workers on the way. are uh w ...
关于 Multi-Agent 到底该不该做,Claude 和 Devin 吵起来了
Founder Park· 2025-06-16 14:16
Core Viewpoints - The articles from Anthropic and Cognition present contrasting yet complementary perspectives on multi-agent systems, highlighting their respective strengths and limitations in different contexts [2][39]. Summary by Sections Multi-Agent Systems Overview - Anthropic's multi-agent system utilizes multiple Claude Agents to tackle complex research tasks, emphasizing the importance of low-dependency and parallelizable tasks for success [2][5]. - Cognition's article argues against building multi-agent systems for coding tasks due to high dependency and tight coupling, suggesting that current AI coding tasks are not suitable for multi-agent approaches [2][39]. Performance and Efficiency - The multi-agent architecture significantly enhances performance, achieving a 90.2% improvement in handling broad queries compared to single-agent systems [9][10]. - Multi-agent systems can effectively expand token usage, with token consumption reaching 15 times that of standard chat interactions [10][12]. Design Principles - The architecture employs a coordinator-worker model, where a main agent orchestrates multiple specialized sub-agents to work in parallel [13][19]. - Effective task decomposition and clear instructions are crucial for sub-agents to avoid redundancy and ensure comprehensive information gathering [21][23]. Challenges and Limitations - Multi-agent systems face challenges in scenarios requiring shared context among agents or where there are significant inter-agent dependencies [12][39]. - The complexity of coordination increases rapidly with the number of agents, necessitating careful prompt engineering to guide agent behavior [21][30]. Debugging and Evaluation - Debugging multi-agent systems requires new strategies due to the cumulative nature of errors and the dynamic decision-making processes of agents [31][32]. - Evaluation methods must be flexible, focusing on the correctness of outcomes rather than adherence to a predetermined path, as agents may take different but valid routes to achieve goals [27][28]. Future Directions - The articles suggest that while current multi-agent systems have limitations, advancements in AI capabilities by 2025 may enable more effective collaboration among agents, particularly in coding tasks [12][58].
统一20+多智能体方法,MASLab震撼发布
机器之心· 2025-06-13 04:31
OpenAI 在通向 AGI(通用人工智能)的五大阶段中,将 「 组织级 」 智能列为最终目标:即 AI 能像一个组织般管理复杂流程、决策高层任务、协调大规 模操作。 近两年来,大量多智能体系统(Multi-Agent Systems, MAS)研究陆续涌出,不断朝这这一里程碑迈进。 为了推动该领域加速健康发展,由上海交通大学、上海 AI 实验室、牛津大学、普林斯顿大学、Meta 等十个机构联合推出的 MASLab,带来 首个统一、全 面、研究友好的大模型多智能体系统代码库: 论文地址:https://arxiv.org/pdf/2505.16988 代码地址:https://github.com/MASWorks/MASLab 「一键横评」「快速上手」「复现无忧」 你是否也曾: 那你一定不能错过 MASLab! MASLab 有多好用? MASLab 统一化集成了超过 20 种主流 MAS 方法 ,涵盖过去两年内各大顶会的成果、多个领域、多种任务类型。并且每种方法都经过研究者们 逐步输出 比对 ,确保过程和结果严格遵循原始实现! | No. | Methodology | Venue | Role | To ...
Anthropic工程师教你怎么做AI Agent:不做全场景、保持简单,像Agent一样思考
Founder Park· 2025-04-11 11:11
文章转载自「INDIGO 科技加速站」 Anthropic 工程师 Barry Zhang 在 AI Engineer 工作坊上的一个分享 "如何构建有效的 Agent",其中印象最深的一个观点: Don't build agents for everything ,反过来理解就是别做什么都能干的 Agent,那是我们大模型要干的事情 构建有效 Agent 的三大要点: Barry 主要负责 Agentic System,演讲内容基于他和 Eric 合著的一篇博文,下面详细总结他们的核心观点,以及对 Agent 系统的演进和未来的思考。 Agent 系统的演进 1. 简单功能(Simple Features): 起初是简单的任务,如摘要、分类、提取,这些在几年前看似神奇,现在已成为基础。 2. 工作流(Workflows): 随着模型和产品成熟,开始编排多个模型调用,形成预定义的控制流,以牺牲成本和延迟换取更好性能。这被认为是 Agent 系统的前身。 3. Agent: 当前阶段,模型能力更强,领域特定的 Agent 开始出现。与工作流不同,Agent 可以根据环境反馈自主决定行动路径,几乎独立运 作。 4 ...