Workflow
《CS231n:深度学习与计算机视觉》课程
icon
Search documents
刚刚,李飞飞主讲的斯坦福经典CV课「2025 CS231n」免费可看了
机器之心· 2025-09-04 09:33
Core Viewpoint - Stanford University's classic course "CS231n: Deep Learning for Computer Vision" is officially launched for Spring 2025, focusing on deep learning architectures and visual recognition tasks such as image classification, localization, and detection [1][2]. Course Overview - The course spans 10 weeks, teaching students how to implement and train neural networks while gaining insights into cutting-edge research in computer vision [3]. - At the end of the course, students will have the opportunity to train and apply neural networks with millions of parameters on real-world visual problems of their choice [4]. - Through multiple practical assignments and projects, students will acquire the necessary toolset for deep learning tasks and engineering techniques commonly used in training and fine-tuning deep neural networks [5]. Instructors - The course features four main instructors: - Fei-Fei Li: A renowned scholar and Stanford professor, known for creating the ImageNet project, which significantly advanced deep learning in computer vision [6]. - Ehsan Adeli: An assistant professor at Stanford, focusing on computer vision, computational neuroscience, and medical image analysis [6]. - Justin Johnson: An assistant professor at the University of Michigan, with research interests in computer vision and machine learning [6]. - Zane Durante: A third-year PhD student at Stanford, researching multimodal visual understanding and AI applications in healthcare [7]. Course Content - The curriculum includes topics such as: - Image classification using linear classifiers - Regularization and optimization techniques - Neural networks and backpropagation - Convolutional Neural Networks (CNNs) for image classification - Recurrent Neural Networks (RNNs) - Attention mechanisms and Transformers - Object recognition, image segmentation, and visualization - Video understanding - Large-scale distributed training - Self-supervised learning - Generative models - 3D vision - Visual and language integration - Human-centered AI [16]. Additional Resources - All 18 course videos are available for free on YouTube, with the first and last lectures delivered by Fei-Fei Li [12].