自动驾驶学习路线

Search documents
4000人了,死磕技术的自动驾驶黄埔军校到底做了哪些事情?
自动驾驶之心· 2025-07-31 06:19
Core Viewpoint - The article emphasizes the importance of creating an engaging learning environment in the field of autonomous driving and AI, aiming to bridge the gap between industry and academia while providing valuable resources for students and professionals [1]. Group 1: Community and Resources - The community has established a closed loop across various fields including industry, academia, job seeking, and Q&A exchanges, focusing on what type of community is needed [1][2]. - The platform offers cutting-edge academic content, industry roundtables, open-source code solutions, and timely job information, streamlining the search for resources [2][3]. - A comprehensive technical roadmap with over 40 technical routes has been organized, catering to various interests from consulting applications to the latest VLA benchmarks [2][14]. Group 2: Educational Content - The community provides a series of original live courses and video tutorials covering topics such as automatic labeling, data processing, and simulation engineering [4][10]. - Various learning paths are available for beginners, as well as advanced resources for those already engaged in research, ensuring a supportive environment for all levels [8][10]. - The community has compiled a wealth of open-source projects and datasets related to autonomous driving, facilitating quick access to essential materials [25][27]. Group 3: Job Opportunities and Networking - The platform has established a job referral mechanism with multiple autonomous driving companies, allowing members to submit their resumes directly to desired employers [4][11]. - Continuous job sharing and position updates are provided, contributing to a complete ecosystem for autonomous driving professionals [11][14]. - Members can freely ask questions regarding career choices and research directions, receiving guidance from industry experts [75]. Group 4: Technical Focus Areas - The community covers a wide range of technical focus areas including perception, simulation, planning, and control, with detailed learning routes for each [15][29]. - Specific topics such as 3D target detection, BEV perception, and online high-precision mapping are thoroughly organized, reflecting current industry trends and research hotspots [42][48]. - The platform also addresses emerging technologies like visual language models (VLM) and diffusion models, providing insights into their applications in autonomous driving [35][40].