Workflow
GCA(Grouped Cross Attention)
icon
Search documents
ICML 2025 | 千倍长度泛化!蚂蚁新注意力机制GCA实现16M长上下文精准理解
机器之心· 2025-06-13 15:45
Core Viewpoint - The article discusses the challenges of long text modeling in large language models (LLMs) and introduces a new attention mechanism called Grouped Cross Attention (GCA) that enhances the ability to process long contexts efficiently, potentially paving the way for advancements in artificial general intelligence (AGI) [1][2]. Long Text Processing Challenges and Existing Solutions - Long text modeling remains challenging due to the quadratic complexity of the Transformer architecture and the limited extrapolation capabilities of full-attention mechanisms [1][6]. - Existing solutions, such as sliding window attention, sacrifice long-range information retrieval for continuous generation, while other methods have limited generalization capabilities [7][8]. GCA Mechanism - GCA is a novel attention mechanism that learns to retrieve and select relevant past segments of text, significantly reducing memory overhead during long text processing [2][9]. - The mechanism operates in two stages: first, it performs attention on each chunk separately, and then it fuses the information from these chunks to predict the next token [14][15]. Experimental Results - Models incorporating GCA demonstrated superior performance on long text datasets, achieving over 1000 times length generalization and 100% accuracy in 16M long context retrieval tasks [5][17]. - The GCA model's training costs scale linearly with sequence length, and its inference memory overhead approaches a constant, maintaining efficient processing speeds [20][21]. Conclusion - The introduction of GCA represents a significant advancement in the field of long-context language modeling, with the potential to facilitate the development of intelligent agents with permanent memory capabilities [23].