TRL仓库原生的DPO Trainer
Search documents
过去一个月高强度RL的实践和思考 - 如何涨点?
自动驾驶之心· 2025-10-19 23:32
Core Insights - The article discusses the recent advancements and challenges in Reinforcement Learning (RL) for Visual Language Models (VLM), emphasizing the importance of foundational work and iterative improvements in achieving performance gains [2][4]. RL Goals - The primary objectives for RL in VLM include achieving a 1-2 point increase in overall performance on SFT model versions and exceeding 1-2 points in specific benchmarks such as mathematics and instruction adherence [5]. RL Overall Approach - The essence of RL is to enhance sampling efficiency rather than enabling the base model to learn new knowledge. It is noted that the base model can outperform RL models in terms of correct response probability when given unlimited attempts [7][8]. Challenges in VLM RL - Key challenges include the selection of efficient RL algorithms, the need for high infrastructure requirements, and the sensitivity of RL to data quality and organization [10][12]. Data Organization - Effective data organization is crucial, requiring a balanced mix of tasks and high-quality input data. The output length is also significantly related to the RL algorithm used, necessitating careful consideration of training data characteristics [13][14]. Key Findings and Conclusions - Short responses negatively impact training effectiveness, and it is essential to construct pairs of responses with clear distinctions between acceptable and rejectable outputs. The importance of meticulous data checking and the absence of a "silver bullet" solution are emphasized [19][24].