Workflow
直接偏好优化(DPO)
icon
Search documents
理想PhysGM:前馈式从单张图片30秒生成4D内容
理想TOP2· 2025-09-02 06:35
Core Viewpoint - The article discusses the innovative PhysGM framework, which transforms 4D generation from an optimization problem into an inference problem, allowing for rapid and efficient generation of 4D simulations from a single image [1][2]. Group 1: Advantages of PhysGM - PhysGM significantly improves speed, generating results in under 30 seconds compared to previous methods that could take hours [3][9]. - The framework simplifies the process by eliminating the need for pre-processing and iterative scene optimization [3][9]. - It enhances physical realism and visual quality in the generated simulations [3][9]. - PhysGM does not rely on large language models, making it more accessible and scalable [3][9]. Group 2: Potential Limitations - There may be limitations in generalization, particularly for non-rigid objects, and the current model predicts only a single aggregate physical property vector [4]. - The performance of the model is constrained by the underlying models used for 3D reconstruction, which may lead to loss of geometric details or inconsistencies in texture [4][6]. Group 3: Training Strategy - The training consists of two phases: supervised pre-training to establish physical priors and DPO-based fine-tuning to align the model with real-world simulations [7][8]. - The first phase involves creating a dataset of over 24,000 3D assets, using a dual-head U-Net architecture to predict geometric and physical parameters [7]. - The second phase utilizes Direct Preference Optimization (DPO) to refine the model based on the quality of generated simulations compared to real reference videos [8]. Group 4: Comparison with Other Methods - PhysGM outperforms several existing methods across multiple dimensions, including the need for pre-processing, automation of parameter computation, generalizability, reliance on large language models, and inference time [9].
VLA+RL还是纯强化?从200多篇工作中看强化学习的发展路线
具身智能之心· 2025-08-18 00:07
Core Insights - The article provides a comprehensive analysis of the intersection of reinforcement learning (RL) and visual intelligence, focusing on the evolution of strategies and key research themes in visual reinforcement learning [5][17][25]. Group 1: Key Themes in Visual Reinforcement Learning - The article categorizes over 200 representative studies into four main pillars: multimodal large language models, visual generation, unified model frameworks, and visual-language-action models [5][17]. - Each pillar is examined for algorithm design, reward engineering, and benchmark progress, highlighting trends and open challenges in the field [5][17][25]. Group 2: Reinforcement Learning Techniques - Various reinforcement learning techniques are discussed, including Proximal Policy Optimization (PPO) and Group Relative Policy Optimization (GRPO), which are used to enhance stability and efficiency in training [15][16]. - The article emphasizes the importance of reward models, such as those based on human feedback and verifiable rewards, in guiding the training of visual reinforcement learning agents [10][12][21]. Group 3: Applications in Visual and Video Reasoning - The article outlines applications of reinforcement learning in visual reasoning tasks, including 2D and 3D perception, image reasoning, and video reasoning, showcasing how these methods improve task performance [18][19][20]. - Specific studies are highlighted that utilize reinforcement learning to enhance capabilities in complex visual tasks, such as object detection and spatial reasoning [18][19][20]. Group 4: Evaluation Metrics and Benchmarks - The article discusses the need for new evaluation metrics tailored to large model visual reinforcement learning, combining traditional metrics with preference-based assessments [31][35]. - It provides an overview of various benchmarks that support training and evaluation in the visual domain, emphasizing the role of human preference data in shaping reward models [40][41]. Group 5: Future Directions and Challenges - The article identifies key challenges in visual reinforcement learning, such as balancing depth and efficiency in reasoning processes, and suggests future research directions to address these issues [43][44]. - It highlights the importance of developing adaptive strategies and hierarchical reinforcement learning approaches to improve the performance of visual-language-action agents [43][44].
视觉强化学习最新综述:全领域梳理(新加坡国立&浙大&港中文)
自动驾驶之心· 2025-08-16 00:03
Core Insights - The article discusses the integration of Reinforcement Learning with Computer Vision, marking a paradigm shift in how AI interacts with visual data [3][4] - It highlights the potential for AI to not only understand but also create and optimize visual content based on human preferences, transforming AI from passive observers to active decision-makers [4] Research Background and Overview - The emergence of Visual Reinforcement Learning (VRL) is driven by the successful application of Reinforcement Learning in Large Language Models (LLMs) [7] - The article identifies three core challenges in the field: stability in policy optimization under complex reward signals, efficient processing of high-dimensional visual inputs, and scalable reward function design for long-term decision-making [7][8] Theoretical Foundations of Visual Reinforcement Learning - The theoretical framework for VRL includes formalizing the problem using Markov Decision Processes (MDP), which unifies text and visual generation RL frameworks [15] - Three main alignment paradigms are proposed: RL with human feedback (RLHF), Direct Preference Optimization (DPO), and Reinforcement Learning with Verifiable Rewards (RLVR) [16][18] Core Applications of Visual Reinforcement Learning - The article categorizes VRL research into four main areas: Multimodal Large Language Models (MLLM), Visual Generation, Unified Models, and Visual-Language-Action (VLA) Models [31] - Each area is further divided into specific tasks, with representative works analyzed for their contributions [31][32] Evaluation Metrics and Benchmarking - A layered evaluation framework is proposed, detailing specific benchmarks for each area to ensure reproducibility and comparability in VRL research [44][48] - The article emphasizes the need for effective metrics that align with human perception and can validate the performance of VRL systems [61] Future Directions and Challenges - The article outlines four key challenges for the future of VRL: balancing depth and efficiency in reasoning, addressing long-term RL in VLA tasks, designing reward models for visual generation, and improving data efficiency and generalization capabilities [50][52][54] - It suggests that future research should focus on integrating model-based planning, self-supervised visual pre-training, and adaptive curriculum learning to enhance the practical applications of VRL [57]
中科院自动化所!视觉-触觉-语言-动作模型方案与数据集制作分享
具身智能之心· 2025-07-30 00:02
Core Viewpoint - The article discusses the development of a Vision-Tactile-Language-Action (VTLA) model aimed at enhancing robot manipulation tasks, particularly in contact-intensive scenarios, by integrating visual and tactile inputs with language instructions [2]. Group 1: Model Development - The VTLA framework addresses the gap in applying visual language models (VLM) to language-conditioned robotic operations, especially beyond visually dominated tasks [2]. - A low-cost multimodal dataset was created in a simulated environment, specifically designed for fingertip insertion tasks, which includes visual-tactile-action-instruction pairs [2]. Group 2: Performance and Results - The VTLA model achieved over 90% success rate on unknown hole types, significantly outperforming traditional imitation learning methods and existing multimodal baselines [2]. - The model's capability was validated through real-world hole axis assembly experiments, demonstrating its superior simulation-to-reality (Sim2Real) transfer ability [2].