Workflow
碳化硅进入先进封装主舞台:观察台积电的碳化硅战略 --- SiC Enters the Advanced Packaging Mainstage_ Observing TSMC’s SiC Strategy
TSMCTSMC(US:TSM)2025-10-09 02:00

Summary of TSMC's SiC Strategy and Industry Insights Industry and Company Overview - The document focuses on TSMC (Taiwan Semiconductor Manufacturing Company) and its strategy regarding Silicon Carbide (SiC) in the context of advanced packaging and AI chip demands [1][2][3] - Other companies mentioned include NVIDIA, AMD, Google, and AWS, highlighting the competitive landscape in AI and HPC (High-Performance Computing) [22][60] Core Insights and Arguments 1. Challenges in AI Chip Design - The increasing complexity and power demands of AI chips have made traditional power delivery methods inadequate, leading to issues like IR drops and transient voltage droops [5][6] - Single GPUs now require over 1000A of current, pushing legacy power delivery systems to their limits [6][22] 2. Innovative Solutions - Foundries and OSAT providers are proposing solutions like Marvell's PIVR and ASE's VIPack to optimize power delivery and thermal performance [8][9] - TSMC's CoWoS-L platform integrates IVRs and eDTCs to enhance power stability and reduce voltage drop [12][13] 3. SiC's Role in Advanced Packaging - SiC is emerging as a critical material for high-voltage ICs and on-chip power delivery, supporting developments in BSPDN and IVR architectures [19][20] - Its unique properties, such as high thermal conductivity and mechanical strength, position SiC as a key enabler for thermal management and optical interconnects [21][51] 4. Market Dynamics - The demand for ultra-large-scale GPUs and ASICs is driving the need for advanced materials and packaging solutions [22][23] - TSMC is exploring SiC as an interposer material to meet the increasing bandwidth and power demands of AI/HPC packaging [61] 5. Competitive Landscape - TSMC's advancements in SiC could provide a competitive edge over Intel and Samsung, who are also investing in power delivery and packaging technologies [60][61] - The introduction of SiC substrates into TSMC's platforms could reshape the AI semiconductor supply chain [59] Additional Important Insights 1. Bottlenecks in Process and Packaging Technologies - The document identifies three critical bottlenecks: thermal challenges, power delivery bottlenecks, and electro-optical integration demands [26][33][35] - TSMC is addressing these through diversified packaging solutions and exploring next-gen silicon photonics [38][39] 2. Future Directions - The integration of SiC into TSMC's advanced packaging platforms like COUPE could redefine the industry's approach to thermal, electrical, and optical challenges [59] - The document emphasizes the importance of overcoming challenges related to defect density, process compatibility, and cost structure for SiC adoption [66][67] 3. SiC in Optical Applications - SiC is also highlighted for its potential in optical waveguides, particularly for AR glasses, due to its high refractive index and thermal conductivity [68][75] - The combination of SiC with Micro LED technology is seen as a promising pathway for future AR displays [77] 4. Research and Development - Ongoing research is focused on the feasibility of integrating SiC with TSV structures to enhance power integrity and thermal management [64][65] - TSMC's patent portfolio indicates a strong commitment to SiC integration in advanced packaging technologies [65] This comprehensive analysis underscores TSMC's strategic focus on SiC as a transformative material in the semiconductor industry, particularly in the context of AI and HPC advancements.