DeepSeek杀出一条血路:国产大模型突围不靠运气
进入2025年末,全球大模型赛道的技术焦点几乎被Google重新夺回。Gemini 3 Pro横空出世,在多个权 威基准上超越所有开源模型,重新确立了闭源阵营的技术高地。一时间,业内关于"开源模型是否已到 极限""Scaling Law是否真的撞墙"的质疑声再起,一股迟滞情绪在开源社区弥漫。 但就在此时,DeepSeek没有选择沉默。12月1日,它一口气发布了两款重磅模型:推理性能对标GPT-5 的DeepSeek-V3.2,以及在数学、逻辑和多轮工具调用中表现异常强势的Speciale版本。这不仅是对技术 能力的集中展示,也是在当前算力资源并不占优的前提下,对闭源"新天花板"的正面回应。 这不是一次简单的模型更新。DeepSeek试图在后Scaling时代找出一条全新路径:如何用架构重塑弥补 预训练差距?如何通过"工具使用中的思考链"实现低token高效率的智能体表现?更关键的是,Agent为 何从附属功能变成了模型能力跃迁的核心引擎? 本文将围绕这三条主线展开分析:DeepSeek是如何在技术瓶颈下突破的?为何率先在开源阵营中重注 Agent?而这是否意味着,开源模型仍有穿透闭源护城河的那条路? 这背后的 ...