DeepSeek开源大模型记忆模块,梁文锋署名新论文,下一代稀疏模型提前剧透
Seek .Seek .(US:SKLTY) 3 6 Ke·2026-01-13 07:14

Core Insights - DeepSeek has introduced a new paradigm called "Conditional Memory" to enhance the Transformer model's knowledge retrieval capabilities, which were previously lacking [1][4][31] - The Engram module allows for significant improvements in model efficiency, enabling simpler tasks to be completed with fewer layers, thus freeing up resources for more complex reasoning tasks [4][21] Group 1: Conditional Memory and Engram Module - The paper presents Conditional Memory as an essential modeling primitive for the next generation of sparse models [1][4] - Engram enables the model to perform tasks that previously required six layers of attention in just one or two layers, optimizing resource allocation [4][21] - The Engram design incorporates a large vocabulary for static knowledge retrieval, allowing for O(1) speed in information retrieval [4][6] Group 2: Performance and Efficiency - The optimal allocation of parameters between MoE (Mixture of Experts) and Engram memory was found to be around 20% to 25%, leading to a reduction in model validation loss [17][21] - In experiments, the Engram-27B model outperformed the MoE-27B model in various knowledge-intensive tasks, with notable improvements in general reasoning and code mathematics [21][22] - The Engram-40B model further increased memory parameters, showing sustained performance improvements and indicating that memory capacity had not yet saturated [25][31] Group 3: Hardware Optimization - The Engram module allows for the offloading of large parameter tables to CPU memory, minimizing inference delays and maintaining high throughput [29][30] - The design principle of "hardware-aware efficiency" enables the decoupling of storage and computation, facilitating the use of massive parameter tables without significant performance costs [31]

Seek .-DeepSeek开源大模型记忆模块,梁文锋署名新论文,下一代稀疏模型提前剧透 - Reportify