比人类专家快2倍,斯坦福联合英伟达发布TTT-Discover:用「测试时强化学习」攻克科学难题
在技术如火如荼发展的当下,业界常常在思考一个问题:如何利用 AI 发现科学问题的新最优解? 一个普遍的解法是「测试时搜索」(Test-time search),即提示一个冻结的(不更新参数的)大语言模型(LLM)进行多次尝试,这一点类似人类在做编 程作业时的「猜」解法,尤其是进化搜索方法(如 AlphaEvolve),会将以往的尝试存入缓冲区,并通过人工设计、与领域相关的启发式规则生成新的提 示。 可是,尽管这些提示能够帮助 LLM 改进以往的解法,但 LLM 本身并不会真正提升,就像一个学生始终无法内化作业背后的新思想一样。 具体来看,团队只是把单个测试问题定义为一个环境,并在其中执行强化学习(RL),因此任何标准 RL 技术原则上都可以应用。然而,需要注意的 是,这里的目标与标准 RL 存在关键差异,这里的目标不是让模型在各类问题上平均表现更好,而是只为了解决眼前这一个问题,并且只需要产出一个优 秀的解决方案,而不是平均产生多个良好的解决方案。 团队将该方法命名为「Test-Time Training to Discover」(TTT-Discover)。为了适应上述目标,其学习目标函数和搜索子程序都旨在 ...