Workflow
量化配置视野:五月建议更分散配置
  • The report includes a global asset allocation model based on artificial intelligence, which uses machine learning to score and rank various assets for monthly equal-weighted allocation strategy[30][31] - The global asset allocation model suggests weights for May: government bond index (66.09%), Nasdaq index (17.59%), German DAX index (13.83%), and Nikkei 225 (2.49%)[30] - Historical performance of the global asset allocation model from January 2021 to April 2025 shows an annualized return of 13.76%, Sharpe ratio of 0.75, maximum drawdown of 16.53%, and excess annualized return of 9.02%[30][36] - The dynamic macro event factor-based stock-bond rotation strategy includes three different risk preference models: conservative, balanced, and aggressive[37] - The stock-bond allocation models for April show stock weights of 45% for aggressive, 13.82% for balanced, and 0% for conservative[37][39] - Historical performance of the stock-bond allocation models from January 2005 to April 2025 shows annualized returns of 19.93% for aggressive, 11.00% for balanced, and 6.06% for conservative[37][44] - The dividend timing model uses economic growth and monetary liquidity indicators to construct a timing strategy for the dividend index, showing an annualized return of 15.84%, maximum drawdown of -21.70%, and Sharpe ratio of 0.89[45][49] - The dividend timing model's recommended position for April is 0%, with most economic growth indicators showing bearish signals and cautious monetary liquidity signals[45] Model Performance Metrics - Global asset allocation model: annualized return 13.76%, Sharpe ratio 0.75, maximum drawdown 16.53%[30][36] - Stock-bond allocation models: annualized returns 19.93% (aggressive), 11.00% (balanced), 6.06% (conservative)[37][44] - Dividend timing model: annualized return 15.84%, Sharpe ratio 0.89, maximum drawdown -21.70%[45][49]