Workflow
TransDiffuser: 理想VLA diffusion出轨迹的架构
LI AUTOLI AUTO(US:LI) 理想TOP2·2025-05-18 13:08

Core Viewpoint - The article discusses the advancements in the field of autonomous driving, particularly focusing on the Diffusion model and its application in generating driving trajectories, highlighting the differences between VLM and VLA systems [1][4]. Group 1: Diffusion Model Explanation - Diffusion is a generative model that learns data distribution through a process of adding noise (Forward Process) and removing noise (Reverse Process), akin to a reverse puzzle [4]. - The model's denoising process involves training a neural network to predict and remove noise, ultimately generating target data [4]. - Diffusion not only generates the vehicle's trajectory but also predicts the trajectories of other vehicles and pedestrians, enhancing decision-making in complex traffic environments [5]. Group 2: VLM and VLA Systems - VLM consists of two systems: System 1 mimics learning to output trajectories without semantic understanding, while System 2 has semantic understanding but only provides suggestions [2]. - VLA is a single system with both fast and slow thinking capabilities, inherently possessing semantic reasoning [2]. - The output of VLA is action tokens that encode the vehicle's driving behavior and surrounding environment, which are then decoded into driving trajectories using the Diffusion model [4][5]. Group 3: TransDiffuser Architecture - TransDiffuser is an end-to-end trajectory generation model that integrates multi-modal perception information to produce high-quality, diverse trajectories [6][7]. - The architecture includes a Scene Encoder for processing multi-modal data and a Denoising Decoder that utilizes the DDPM framework for trajectory generation [7][9]. - The model employs a multi-head cross-attention mechanism to fuse scene and motion features during the denoising process [9]. Group 4: Performance and Innovations - The model achieves a Predictive Driver Model Score (PDMS) of 94.85, outperforming existing methods [11]. - Key innovations include anchor-free trajectory generation and a multi-modal representation decorrelation optimization mechanism to enhance trajectory diversity and reduce redundancy [11][12]. Group 5: Limitations and Future Directions - The authors note challenges in fine-tuning the model, particularly the perception encoder [13]. - Future directions involve integrating reinforcement learning and referencing models like OpenVLA for further advancements [13].