Core Viewpoint - Huawei's CloudMatrix 384 super node claims to rival Nvidia's NVL72, but there are discrepancies in the hardware descriptions and capabilities between CloudMatrix and the UB-Mesh paper, suggesting they may represent different hardware forms [1][2][8]. Group 1: CloudMatrix vs. UB-Mesh - CloudMatrix is described as a commercial 384 NPU scale-up super node, while UB-Mesh outlines a plan for an 8000 NPU scale-up super node [8]. - The UB-Mesh paper indicates a different architecture for the next generation of NPUs, potentially enhancing capabilities beyond the current 910C model [10][11]. - There are significant differences in the number of NPUs per rack, with CloudMatrix having 32 NPUs per rack compared to UB-Mesh's 64 NPUs per rack [1]. Group 2: Technical Analysis - CloudMatrix's total power consumption is estimated at 500KW, significantly higher than NVL72's 145KW, raising questions about its energy efficiency [2]. - The analysis of optical fiber requirements for CloudMatrix suggests that Huawei's vertical integration may mitigate costs and power consumption concerns associated with fiber optics [3][4]. - The UB-Mesh paper proposes a multi-rack structure using electrical connections within racks and optical connections between racks, which could optimize deployment and reduce complexity [9]. Group 3: Market Implications - The competitive landscape may shift if Huawei successfully develops a robust AI hardware ecosystem, potentially challenging Nvidia's dominance in the market [11]. - The ongoing development of AI infrastructure in China could lead to a new competitive environment, especially with the emergence of products like DeepSeek [11][12]. - The perception of optical modules and their cost-effectiveness may evolve, similar to the trajectory of laser radar technology in the automotive industry [6].
910C的下一代