Core Viewpoint - The article discusses the emergence of CoWoP (Chip-on-Wafer-on-PCB) technology as a potential alternative to CoWoS (Chip-on-Wafer-on-Substrate) and CoPoS (Chip-on-Panel-on-Substrate), highlighting its advantages and disadvantages in semiconductor packaging [1][12][14]. Summary by Sections CoWoS Overview - CoWoS involves a three-stage packaging process where dies are connected to an interposer, which is then connected to a packaging substrate, followed by cutting the wafer to form chips [7]. CoPoS Technology - CoPoS replaces the wafer with a panel, allowing for a higher number of chips to be accommodated, thus improving area utilization and production capacity [11]. Introduction of CoWoP - CoWoP eliminates the packaging substrate, allowing chips to be directly soldered onto the PCB, which simplifies the design and reduces costs [12][14]. Advantages of CoWoP - CoWoP reduces packaging costs by eliminating the expensive packaging substrate, leading to lower material costs and reduced complexity [14]. - It offers shorter signal paths, enhancing bandwidth utilization and reducing latency for high-speed interfaces like PCIe 6.0 and HBM3 [15]. - The absence of a packaging cover allows for better thermal management options, which is beneficial for high-power AI chips [15]. Disadvantages of CoWoP - The direct attachment to the PCB increases the requirements for PCB reliability and precision, as the tolerance for errors is significantly reduced [16]. - The lack of protective packaging raises concerns about reliability under thermal cycling, mechanical stress, and transport vibrations [16]. - Successful implementation requires close collaboration between chip packaging and PCB manufacturing from the design stage, increasing supply chain management complexity [16]. Conclusion - CoWoP technology is considered aggressive and presents significant challenges, indicating that it may not have an immediate impact on all PCB companies in the short term [17].
CoWoS的下一代是CoPoS还是CoWoP?