Workflow
Meta「分割一切」进入3D时代!图像分割结果直出3D,有遮挡也能复原

Core Viewpoint - Meta's new 3D modeling paradigm allows for direct conversion of image segmentation results into 3D models, enhancing the capabilities of 3D reconstruction from 2D images [1][4][8]. Summary by Sections 3D Reconstruction Models - Meta's MSL lab has released SAM 3D, which includes two models: SAM 3D Objects for object and scene reconstruction, and SAM 3D Body focused on human modeling [4][8]. - SAM 3D Objects can reconstruct 3D models and estimate object poses from a single natural image, overcoming challenges like occlusion and small objects [10][11]. - SAM 3D Objects outperforms existing methods, achieving a win rate at least five times higher than leading models in direct user comparisons [13][14]. Performance Metrics - SAM 3D Objects shows significant performance improvements in 3D shape and scene reconstruction, with metrics such as F1 score of 0.2339 and 3D IoU of 0.4254 [15]. - SAM 3D Body also achieves state-of-the-art (SOTA) results in human modeling, with MPJPE of 61.7 and PCK of 75.4 across various datasets [18]. Semantic Understanding - SAM 3 introduces a concept segmentation feature that allows for flexible object segmentation based on user-defined prompts, overcoming limitations of fixed label sets [21][23]. - The model can identify and segment objects based on textual descriptions or selected examples, significantly enhancing its usability [26][31]. Benchmarking and Results - SAM 3 has set new SOTA in promptable segmentation tasks, achieving an accuracy of 47.0% in zero-shot segmentation on the LVIS dataset, surpassing the previous SOTA of 38.5% [37]. - In the new SA-Co benchmark, SAM 3's performance is at least twice as strong as baseline methods [38]. Technical Architecture - SAM 3's architecture is built on a shared Perception Encoder, which improves consistency and efficiency in feature extraction for both detection and tracking tasks [41][43]. - The model employs a two-stage generative approach for SAM 3D Objects, utilizing a 1.2 billion parameter flow-matching transformer for geometric predictions [49][50]. - SAM 3D Body utilizes a unique Momentum Human Rig representation to decouple skeletal pose from body shape, enhancing detail in human modeling [55][60].