Core Viewpoint - Extreme Ultraviolet (EUV) lithography technology is essential for manufacturing chips at advanced technology nodes, but it faces challenges, particularly in developing suitable EUV photoresists [1][3][4]. Group 1: Challenges in EUV Lithography - One major challenge is the need to understand the interaction mechanisms between EUV and materials, which has sparked unprecedented interest in EUV photoresist research [1][3]. - The transition from Deep Ultraviolet (DUV) to EUV lithography has increased photon energy, altering reaction mechanisms and introducing various challenges, such as additional chemical reactions induced by EUV photons and reduced light reaching the wafer due to reflective optical elements [4][5]. - Key performance indicators for evaluating EUV photoresists include resolution, line edge roughness, sensitivity, and random failure (RLSF), which reflect the balance between feature size, roughness control, exposure dose, and defect rate [4][5]. Group 2: Requirements for Introducing New Materials - The introduction of new materials in wafer fabs requires strict prerequisites, including a comprehensive Material Safety Data Sheet (MSDS) that outlines chemical composition, physical properties, and safety precautions [20][21]. - Metal contamination is a significant concern, as it can severely impact device performance and reliability; thus, photoresists must have extremely low metal trace content [22][24]. - The compatibility of new photoresist formulations with existing solvents and processes must be tested to prevent contamination and ensure process integrity [30][33]. Group 3: Testing and Validation Processes - The entire process of photoresist handling in wafer fabs is complex and influenced by various factors, necessitating a clear understanding of the differences between laboratory and fab environments [9][10]. - New photoresist concepts must undergo rigorous testing and validation in industrial settings, which often face challenges related to contamination risks and process control [7][8]. - The introduction of new materials requires collaboration with equipment manufacturers, such as ASML, to obtain necessary exemptions and ensure compliance with operational standards [39][46].
EUV光刻,关键一环