Workflow
半监督学习
icon
Search documents
超低标注需求,实现医学图像分割,UCSD提出三阶段框架GenSeg
3 6 Ke· 2025-08-12 03:24
GenSeg用AI生成高质量医学图像及对应分割标注,在仅有几十张样本时也能训练出媲美传统深度模型的分割系统,显著降低医 生手工标注负担。 医学图像语义分割是现代医疗中的关键环节,广泛应用于疾病诊断、治疗规划、手术辅助等任务中。从皮肤病变到眼底病灶、从肿瘤边界 到器官结构,精准的像素级分割结果对于临床医生具有极高价值。 随着深度学习的发展,医学图像语义分割的准确性显著提升,但一个普遍的核心难题依然存在——对大量高质量标注数据的依赖。 在医疗领域中,标注一个分割样本意味着:专业人员需逐像素勾画病灶区域;每张图像的标注常耗时数十分钟甚至更久;而且数据受限于 隐私保护等合规限制。 这使得我们在许多真实临床场景中,面临超低数据的困境:数据少,难以训练出性能可靠的模型;而没有数据,则深度学习寸步难行。 尽管已有一些尝试(如数据增强、半监督学习),但它们仍存在关键局限:数据增强和分割模型训练分离,生成的样本无法很好的提升分 割模型的性能;半监督方法依赖海量未标注图像,而这些在医疗领域仍存难以获得。 针对上述问题,加州大学圣地亚哥分校的研究团队提出了GenSeg,一种用于训练语义分割模型的三阶段框架,该框架中数据增强模型的优 ...